

About me

Hi! Imam Gabriela and this is my dog Ronnie A^{*} who learned how to communicate w/ AI!

Jk! The only thing he did is tell Alexa to buy a $\$ 300$ "premium grands large breed kibble"!

I contacted Amazon and returned it but the mystery persisted... Mystery
I investigated father and found out that my partner(who is in France) put it in our cart but removed it since!
Whew! My dog is not taking over the world!

Work cited

1. De Candia, Giuseppe et. al. "Dynamo: Amazon's Highly Available key-value Store"

Additional resources 00

- Definitely the original paper itself @ allthingsdistributed.com/ files / amazon - dynamo-sosp 2007. pdf
- Christopher Batey's talk about Dynamo@vimeo.com/ showcase /4414343
sว2人nosad y pat！？そ⿴囗
ipanjos hiopeshW.

$$
\text { ua! ! } 1 \text { m! ! }{ }^{\text {day }} \text {. }
$$

Gu！yspy tuatsisuar no ano W ． 6u！ysoy tuapsisuog．

$5+42+40$ ）

sue：truntis hym pur satorado＇sas！n ias raypo puo paro buiddoys sinoznuy sazmod tryt wayshs aroes anjun－hay b＇omouh O mou u：opdxa of hap $\mid l .1$ an！z sinp ul
$j^{2020} 1$ d t^{1} aye u！6uocm t！tab
tiop buildoys ayp noo moy tned

$$
\text { ¡anss! ano parjos froy } 1
$$

¡o ouvapo u！sas aye hy！tou pure
sobusup ypus foppop of hom r s！arays aghrom pho pros any po saprops ypoa arops of asuas saybunf yuily ।

；10pro buoum ayt u！owl a paprobudord saburup soy purs aruost u！prosqu pars ays yi！m fisng som raupaod him alym＇sh aye u！maness r uo propep Gigugord som 10pao hum try mou arop sit！gulye I froye pins bu！no H

Consistent Hashing
To get a better understanding of how Dynamo works, we must first explore the core technology behind its data store, consistent hashing. To maximize the number of requests that receive a response (availability) of the system, we can partition the data and store it on different servers using a hash function.

Dynamo leaves it up to the client to resolve issues with the inconsistent data[i].In regards to shopping cart it's better for both the customer and the company to keep the removed item in the cart in case of uncertainty.

$$
\begin{aligned}
& \text { +目 思 } \\
& \text { ¿pappr s! ouo maи } \square \text { 10 s!!pf } \\
& \text { samazs anf jo ano } f \text { ! frym fncl }
\end{aligned}
$$

uoparofs aq plnoつ $\forall S h$ u！siasn of

> of spur!p rof rafspy f! aybur pinom foyt fom 0 u! wayt opnq!its!p puo soys byวtロиวuวb pinom f ! uayt (i) aq apptaq
> $f!$ poob s! $40!+7$ ung ysvy ino fl

Sna
nosvas buiddoys hop！！oy fisa！sing วug Gu！inp uonว fioo aup moif swot！ วnowar pue ppb of jap buiag bulz！f！10！1d
 of aulif buol b aynt pinos upiym）
somith $\|^{b} f^{b}$ saulypous $\|$ b uo awbs ant
s！bfop anoh aıns bu！ybu＇＇h unats！suo） aว10fur of 1 oyfaym asooup of
 $p a f n g!1+s!p$ s！\quad tpp aıaym sulapshs u！vajb）suratshs pataq！ips！p aye fo $\|$ vi u！＇torf u｜ci］hp！｜！gbi！ono
109 honats！snoo saprut oว！n 125 ＋10 bu！ddovs 5, uoz own

Our hash Junction would have to re-generate new hash values and and distribute them all over again.
With millions of records on a platform like Amazon that could be very expensive in terms of money and time.
To ensure that the shopping cart service is highly scalable (servers could be added and deleted all the time), Dynamo uses consistent hashing.

The eventual consistency model states that eventually all servers will have the same data on them, so it permits Dynamo to be an always -on writable system. On the other hand, in the strong consistency model, client has to wait for all nodes to update their values before they could write anything new. Strong consistency is important in systems that power banks where the events are order (time) sensitive.

\& cancas puos sancas 'sinoqybiau

 anoy am f! aruatsu! aof shag atop yo aburas
 uo patooog Gymopuods! and as yova araym
 jo ponpam on s! Gu!ysin tuapsisuo)

If a new server is added then it picks up about the same workload from the other available nodes (in our example, 20-25 keys) and gets its own spot on the ring. server

The main feature that makes this method faster than regular hashing is that only neighbouring servers are affected on change. There is no need to re-generate hashes for every single server in the system which increases its availability! This, in turn, makes the system more complex and harder to maintain. Let's see how Dynamo deals with backups!

Dynamo has to make copies of its data (replications) all the time in order to ensure high availability and durability (preservation of data).

If we have data we want to read from server A, but the server is down, we could still read it if other servers have a copy of it. When data is written to a particular server B, B is responsible for sending it to its successors for replication in addition to storing it locally on B.

