FGHTING &
<> FAULTS

IN D ISTRIBVTED

Small vote: T+ was during the making of this that
T realized just how important the study of distributed
systems is in the context of fighting games(specifically
how wetcode is havdled). Unfortunately, T didw'+ include
any examples too involved in this zine for simplicity, but
T highly recommend checking that topic out!

WHAT ARE

DISTRIBUTED SYSTEMS?

Ever tried to access a website, game, or any other
server-based application, and were met with it being
naresponsive, slow, or outright maltunctioning?

T+ makes you wownder...

Good vews! This already exists!
Dealing with these issues is what
distributed systems is for.

A distributed system is a system made up of
independent components that communicate over
a wetwork with messages.

Servey 2
secrver | ctorene cerver 3
cxot€ » A Store A
SToraae / \ STorane
A A
T Store A
CLIENT

This practice solves a lot of real world problewms,
as if any of these components fall, they fail
independently.

Server 2
StTorage serveir 3
A
sﬁtﬂt
AN
m
CLIENT

The example above demonstrates avn environment
where crashes are possible. However, this is not
the only fanlt that can occur +o a server.

Iw this zive, T hope to cover some of the important
types of faults, as well as give an introduction to
the techvidues used i distributed systems that
allows us to tolerate thewm.

SAFET‘/ and LIVENESS

PROPERTIES

To understavnd faunlts, we should first understand
safety and liveness properties. These properties help
us define what the correct behavior of a systewm is.
wWe can’t know what’'s wrowg if we dow’t know what's
right, right7

Eusuring safety properties is ensuring that wothing
“vad” will happen in how our program runs. They help us
define which states are incorrect for our systewm.,

Here, we input a kick. However, for whatever reason, +he
player puuches instead. Because our execution resulted v
av wicorrect state, it violated our safety property.

Iw the context of distributed systewms, safety violations
can nclude data corruption or a Violation of consistency
between message sends.

Cavol

Viclation oi- FIFO messaqng ("“‘6**7 me'er'lﬂj)

Liveness properties ensure that something “good”
will eventually happen. For example, let’'s make
sure that a round of our fighting game will always
end at some point.

PLAYER | _ Tmer PLAYER 2
healthbar
reaches o reaches O

We caw consider the match ending as a “good thing”,
becaunse 1ts something we always want to eventually
happen. Our timer handles this liveness property.

Similar logic can be applied +o our programs; we might
always want our executions to terminate, so we'd
want to make sure there are vo infivite loops, or
anything else that might prevent this.

FauLr MopeLs

Fault wmodels provide us with a clear understanding
of the different types of faults that can occur v
our distributed system.

When we know what faults we might ewcounter,
we cav design our systewm with respect +o +hewm.
We do this by ensuring our safety and liveness
properties hold even if a fault occurs.

SERVERS

@“@ -15 the data shill correc+?
\ : / -w:il the sgshm be able ‘hi rccovtr?

There are mawy different kinds of faults, and the
classification of one fault may encapsulate another.
The man classifications are crash faunlts, omission
faults, timing faults, and Byzantive faults.

we'll begin by defining each owe.

Crash faults - a crash faunlt occurs when a process
fails by halting all operations. In this case, the
process will vo longer send or receive messages.

Practss Z

This is very baad for a distributed systemlll
Rewmewmber: our system is comprised of compovents
that must communicate throungh messages!

Tf we dow’'t have a way to deal with these faults,
I+ could ruin our whole system! But dow’t pavic yet,
we'll come back +o this.

Owmission faults - omission faults occur simply whew
a message 1s lost. In this case, a process just fails
to send or receive a message.

Process | Frocess 2

Yo,
Do, o >

covld s+ill be rwﬂﬂiv:j!

Sounds pretty similar right? That's becanse crash
fanlts actually connt as omission faults. A message
sewt to a crashed server will always be omitted, so
you cav just think of 1+ as an omission fault +that
will always occur so long as the server is doww.

Timing faults - timing faults occur when an event
occurs oo early or too late. For example, a process
might respond oo slowly.

But wait... if crash faults count as omission faults,
conld i+ be that omission faults count as timing
fanlts?

You probably weren't thinking that, but I took a
class on this, so T already knew: Yes, they dol

Nl

-I s

/A

Think of it this way: Because omitted messages are never
received, they could be viewed as infivitely late messages.

,kWHAT?I BUT How?

Avd fivally, a Byzantine faunlt is whew a process behaves
M an arbitrary or malicions way. This encompasses all
of the previously covered faunlts.

B‘JZN'rlNE FAULTS

That means if we
can havdle Byzantive
faults, we can hawdle
any fanl+!

' T\MING FA4 ULTs

(this is insavely
difficult to do)

CRASH FAULTs

How do these affect our safety and liveness?

For the sake of clarity and conciseness, we'll
focus on crash faults in this zive.

wWhew a server crashes, the data on that
server is lost. This is a “bad thing”, so i+
violates our safety.

Server

Whew a server crashes, any requests sent +o
that server will vever be received, violating
liveness. Receiving requests is a “good thing”!

PLAYER 2

v, Wl
BT,

RECONNECT ING

i

fl-‘

(t+his doesn't happen

in an actuaj mn:l-ch)

"

How TO

FIGHT FauLTS

Now that we’ve covered the different types of
faults, lets learn some techvidques to tolerate theml

To help keep safety avd livenwess in the crash fault
model, we can use...

KEPLICATION

Replication is the practice of making multiple copies
of data. The backup servers we previously mentioned
are an example of this.

Sevver l Serviv 2 sevver 3

CRASH!

s+ill 9000 | '

Replication also helps us with:
-Data locality: keeping data close to clients that
may veed it

-Scalability: Dividing work between replicas +o
avoid bottlenecking

Down DeTEcTION

Down detection involves techvigques used +o detect
whewn a server has become uwreachavle. Common ways

we cav implement this are with timeounts or a
heartbeat wmechanism.

Timeouts set a time limi+ on a server’s reponse.

TIMEOUT s

b’ rfmnvm, Has S("V(l’;

CONNECTION
F T HED ouT

Heartbeat mechavisms continnously send siguals
between servers to show that they are still alive.

HEA RTBEAT

—-‘) I'm alive | —
—5 I'm alive ! — Here, B was able
to detect that A

—5 I'm alive ! —

was doww because

: It stopped receiving
@ ; . messages from A.

How do these help with safety awnd liveness?

Replication allows us to guard against data loss.
When ove replica crashes, we still have others to
hold our data. This ensures safety!

Down detection allows us to learn whew a server
has crashed. T we are aware of this, we can do
something about 1+, such as deleting the server so
that our system can continue rumning past an
uiresponsive redquest. This ensures liveness!

Hooray!l We now know some ways that our systems
can Tight faults!

PLAMER 2 DIS(ONNECTED

Kererences

The information in this zive was mostly from
notes that I had from Professor Lindsey Kuper’s
Distributed Systems lectures. Iw fact, the thewme
of this zine was partly inspired by an example she
made in class(liveness i terminating a wmatch of a
fighting game) which T used here.

However, here are some resources that I found
helpful on the topic:

"Fault Tolerawce in Distributed System." GeeksforGeeks,
geekstorageeks.org/fantt-tolerance-in-distributed-system/

"Fault and Failure in Distributed Systems.” Baeldung,
https:/[www.baeldung.com/cs/distributed-systems-faunlt-failure

For (SEI38 w/ Pro&. Lindseﬂ va?er
Al A

