
Distrib Comput (1994) 7:149-174

DH51 B B(S D
�9 Springer-Verlag 1994

Detecting causal relationships in distributed computations:
in search of the holy grail*
Reinhard Sehwarz I and Friedemann Mattern 2

Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
2 Department of Computer Science, University of Saarland, Im Stadtwald 36, D-66041 Saarbrticken, Germany

Received November 1991 / Accepted October 1993

Reinhard Schwarz received a di-
ploma in computer science from the
University of Kaiserslautern, Ger-
many, in 1990. Since then, he is
working as a research assistant at the
computer science department. His
research interests include debugging
and monitoring of distributed sys-
tems, runtime support for object-
oriented distributed programming,
and distributed algorithms.

veyed. The issue of observing distributed computations in
a causally consistent way and the basic problems of detect-
ing global predicates are discussed. To illustrate the major
difficulties, some typical monitoring and debugging
approaches are assessed, and it is demonstrated how their
feasibility is severely limited by the fundamental problem
to master the complexity of causal relationships.

Key words: Distributed computation - Causality -
Distributed system - Causal ordering - Logical time
- Vector time - Global predicate detection - Distributed
debugging - Timestamps

Friedemann Mattern received
the diploma in computer science
from Bonn University, Germany,
and the Ph.D. degree from the Uni-
versity of Kaiserslautern, Germany,
in 1983 and 1989, respectively. Since
!991 he is a professor of computer
science at the University of Saarland
in Saarbr/icken, Germany. His cur-
rent research interests include pro-
gramming of distributed systems,
distributed applications, and distrib-
uted algorithms.

Summary. The paper shows that characterizing the causal
relationship between significant events is an important but
non-trivial aspect for understanding the behavior of dis-
tributed programs. An introduction to the notion of
causality and its relation to logical time is given; some
fundamental results concerning the characterization of
causality are presented. Recent work on the detection of
causal relationships in distributed computations is sur-

* The work presented in this paper was carried out as part of the
PARAWAN project supported by the Bundesministerium ffir Forschung
und Technologie (BMFT)

1 Introduction

Today, distributed and parallel systems are generally
available, and their technology has reached a certain
degree of maturity. Unfortunately, we still lack complete
understanding of how to design, realize, and test the soft-
ware for such systems, although substantial research effort
has been spent on this topic. It seems that implementing
distributed programs is still an art rather than an engineer-
ing issue; understanding the behavior of a distributed
program remains a challenge. One of the main reasons for
this is the nondeterminism that is inherent to such pro-
grams; in particular, it is notoriously difficult to keep track
of the various local activities that happen concurrently and
may (or may not) interact in a way which is difficult to
predict - leading to, for instance, potential synchroniz-
ation errors or deadlocks.

For a proper understanding of a distributed program
and its execution, it is important to determine the causal
and temporal relationship between the events that occur in
its computation. For example, it is often the case that two
concurrent or causally independent events may occur in
any order, possibly yielding different results in each case.
This indicates that nondeterminism is closely related to
concurrency. In fact, the effects of concurrency and non-
determinism play an important rote in the process of
analyzing, monitoring, debugging, and visualizing the be-
havior of a distributed system.

150

Distributed systems are loosely coupled in the sense
that the relative speed of their local activities is usually not
known in advance; execution times and message delays
may vary substantially for several repetitions of the same
algorithm. Furthermore, a global system clock or perfectly
synchronized local clocks are generally not available.
Thus, it is difficult to identify concurrent activities in
distributed computations. In this paper, we show how the
notion of concurrency can be based on the causality rela-
tion between events. The characterization and efficient
representation of this relation is a non-trivial problem. In
the sequel, we survey several approaches for the analysis of
the causality relation and related concepts such as logical
time or global predicates which are crucial for the under-
standing of distributed computations.

1.I System model: events, time diagrams, and causality

We use a widely accepted model where a distributed system
consists of N sequential (i.e., single-threaded) processes
P1 Pu communicating solely by messages.1 The local
states of all processes are assumed to be disjoint, i.e.,
processes do not share common memory. The behavior of
each process consists of local state changes, and of the
sending of messages to other processes; these actions are
completely determined by a local algorithm which also
determines the reaction to incoming messages. The con-
current and coordinated execution of all local algorithms
forms a distributed computation. For the rest of this paper,
we assume that communication between processes is
point-to-point, and that message transfer may suffer from
arbitrary non-zero delays. We do not assume F I F O order
of message delivery unless explicitly stated. Furthermore,
we do not assume the availability of a global clock or
perfectly synchronized local clocks.

The occurrence of actions performed by the local algo-
rithms are called events. From an abstract point of view,
a distributed computat ion can be described by the types
and relative order of events occurring in each process. Let
E~ denote the set of events occurring in process P~, and let
E = E~ w �9 �9 " u EN denote the set of all events of the
distributed computation. These event sets are evolving
dynamically during the computation; they can be obtained
by collecting traces issued by the running processes. As we
assume that each P~ is strictly sequential, the events in E~
are totally ordered by the sequence of their occurrence.
Thus, it is convenient to index the events of a process P~ in
the order in which they occur: Ei = {ela, e~2, e~3.. �9 }. We
will refer to this occurrence order as the standard enumer-
ation of E~.

For our purposes, it suffices to distinguish between
three kinds of events: send events, receive events, and

1 A fixed number of processes is assumed mainly for notational
convenience; a generalization of our model to a dynamically chang-
ing set of processes is straightforward. One could, for example, model
dynamically created (or destroyed) processes as being silently present
throughout the computation, producing events only during their
actual lifetime. Creating a new process would then correspond to
sending an activation message to a process already kept in reserve

r et2 el3 e| 4 a '.'eai-fime ins~.an~

PI @ ~ ~ e 4~-
22 e23

P2 ~

~3! e32 //~e33
P3 ~ e - - ~ P -

Fig. 1. A time diagram of a distributed computation

internal events. A send event reflects the fact that a message
was sent; a recewe event denotes the receipt of a message
together with the local state change according to the
contents of that message. A send event and a receive event
are said to correspond if the same message that was sent in
the send event is received in the receive event. We assume
that a send event and its corresponding receive event occur
in different processes. Internal evems affect only the local
process state. Events are assumed to be atomic. Thus, we
do not have to bother with events that are simultaneous in
real time, and an event can safely be modelled as having
a zero duration.

It should be noted that our model does not explicitly
deal with conflicts, as is common practice in Petri net
theory or related concurrency theories [51, 56, 73]. This
does, however, not imply that the local algorithms are
required to work deterministically, i.e., that the possibility
of conflicts is excluded. Our discussion merely refers t o
computations which have actually occurred li.e., s0-calied
single runs or executions); we do not discuss methods ~br
the specification of possible runs Thus, our model of com-
putation does not preclude constructs such as CSP-like
guarded commands, or nondeterministic message select,
statements in the underlying programming or specification
language.

A convenient way to visualize distributed computa-
tions are time diagrams. Figure 1 shows an example for
a computat ion comprising three processes, where the pro-
gress of each process is symbolized by a directed line.
Global time is assumed to move from left to right, and
global time instances correspond to vertical lines in the
time diagram. Events are symbolized by dots on the pro-
cess lines, according to their relative order of occurrence.
Messages are depicted as arrows connecting send events
with their corresponding receive events.

By examining time diagrams like Fig. 1, it becomes
obvious that an event e may causally affect another event e'
if and only if there is a directed !eft-to-right path in the
time diagram starting at e and ending at e'. Thus, event
et l may affect events e~2, e13, and e14 which are local
relative to el 1, and also non-local events such as ez 1 or e23.
On the other hand, event e12 can neither influence event
e ~ occurring earlier on the same process line, nor can it
affect non-local events like e3~ or e33. We can formalize
this observation by defining the causality relation as
follows:

Definition 1.1. Given the standard enumeration of E~, the
causality relation ~ ~_ E x E is the smallest transitive rela-
tion satisfying:
(1) If ei~, eik ~ Ef occur m the same process Pi, and j < k.
t hen e U ---> e~k.

!51

(2) If s s E~ is a send event and r s Ej is the corresponding
receive event, then s ~ r.

Note that -~ is irreflexive, asymmetric, and transitive; i.e.,
it is a strict partial order. By definition, the causality
relation extends the partial order defined by the standard
enumeration of E l , E 2 , . . . , and EN. Informally, our rea-
soning about the causal relationship between events can be
stated in terms of the causality relation as follows: An
event e may causally affect another event e' if and only if
e-~ e'.

The causality relation ~ of Definition 1.1 is actually
identical to the "happened before" relation defined by
Lamport in [36]. We prefer to use the term "causality"
rather than "happened before" because the relation de-
fined in Definition 1.1 is causal rather than temporal. For
example, event e33 in Fig. 1 occurs at a later real-time
instant than event e11, although they are not causally
related.

If, for two events e and e', neither e ~ e', nor e ' ~ e
holds, then neither of them causally affects the other. As
we assume that there is no global real-time clock avail-
able, there is no way to decide which of the events e and
e ~ took place first "in reality" - we do not know their
absolute order. This motivates the following definition of
concurrency:

Definition 1.2. The concurrency relation]1 -~ E x E is de-
fined as e I[e' iff -7 (e --, e') and --1 (e' ~ e).

If e IIe' holds, e and e' are said to be concurrent.

Observation 1.3. The concurrency relation is not transitive.

For example, in Fig. 1 elzHe31 and e31 Ilez2 hold, but
obviously e12 and e22 are not concurrent.

1.2 The significance of the causality relation

Causality is fundamental to many problems occurring in
distributed computing. For example, determining a consis-
tent 91obaI snapshot of a distributed computation
[10, 24, 45] essentially requires to find a set of local snap-
shots such that the causal relation between all events that
are included in the snapshots is respected in the following
sense: if e' is contained in the global snapshot formed by
the union of the local snapshots, and e ~ e' holds, then
e has to be included in the global snapshot, too. That is,
consistent snapshots are subsets of E that are left-closed
with respect to the causality relation --*. Thus, the notion
of consistency in distributed systems is basically an issue of
correctly reflecting causality.

Causal consistency has many important applications.
For example, determining consistent recovery points is
a well-known problem in the field of distributed database
management. For determining deadlocks or detecting the
termination of a distributed computation [43], the global
view of the computation state must also be causally consis-
tent in order to prevent so-called phantom deadlocks and
false termination states. In distributed debugging, detect-
ing global predicates is a key issue, and the causality
relation is of utmost importance [15, 27, 30, 41]. Again,

the problem is to obtain a consistent view in order to
correctly evaluate the global predicate. Analyzing the
causal relationship between events is also helpful for the
detection of race conditions and other synchronization
errors - one of the most difficult problems in distributed
programming. Another issue is the proper replay of con-
current activities in distributed systems for the purpose of
debugging and monitoring. Here, the causal relation deter-
mines the sequence in which events must be processed so
that cause and effect appear in the correct order. When
replaying trace data, the amount of stored information can
significantly be reduced by appropriately representing the
causal structure of the computation [50].

Causality plays also an important role in the exploita-
tion of maximum parallelism, i.e., for distributed applica-
tions which are required to run "as asynchronous as
possible". An analysis of the causality retation can there-
fore serve as an abstract concurrency measure of an algo-
rithm [11, 20]. Note that all events which are not causally
related can be executed in parallel - at least in principle.
Hence, a careful study of causality could yield the "optimal
parallelization" of a given set of events, and comparing this
with a sequential ordering may lead to a formal definition
of the "inherent degree of parallelism" of the underlying
computation.

In distributed protocols, the relaxation of unnecessary
synchronization constraints may permit a higher degree of
concurrency; a minimum requirement for synchronization
is that the causal order of events is respected. Communica-
tion protocols for point-to-point or multicast communica-
tions which enforce only a causal delivery order (instead of
insisting on synchronous delivery) are based on this idea
[6, 64]. Here, different communication activities can pro-
ceed in parallel, only the delivery of messages has to be
delayed according to causality constraints. For multicast
operations, this technique was successfully employed in
the ISIS system [6, 8]. Causally ordered broadcast proto-
cols are useful, for example, for the realization of fault
tolerant systems [7]. A similar idea is used in the imple-
mentation of"causal shared memory" [2, 31], a weak form
of shared virtual memory.

In the theory of distributed computing, causality has
also been used for reasoning about the properties of asyn-
chronous systems. In [53], for example, it is argued that in
many cases causality can serve as a more appropriate
substitute for the traditional notion of real-time, and that
reasoning based on the causal rather than on the temporal
structure of a system is the correct level of abstraction in
a distributed setting. This view, which has been advocated
since a long time by the theory of Petri nets [59], is now
also shared by most researchers working on distributed
operating systems as a recent debate among experts shows
[62].

2 Causal history and vector time

In this section, we aim at a practical method to determine
the causal relationship between events. We start with an
easy-to-understand, but rather impracticable approach by
assigning a complete causal history to each event, and we
show that these histories accurately characterize causality.

152

Some refinements of the basic scheme will finally lead to
a more practical concept generally known as vector time.

2.1 Causal histories

In principle, we can determine causal relationships by
assigning to each event e its causal history C(e), where C(e)
is a set of events defined as follows:

D e f i n i t i o n 2.1. Le t E = E~ u . - ' w EN denote the set of
events of a distributed computat ion, and let e ~ E denote
an event occurring in the course of that computat ion. The
causal history of e, denoted C(e), is defined as
C(e) = {e' e El(e'--, e)} u {e}.

The projection of C(e) on E~, denoted C(e)[i], is defined
by C(e)[i] = C(e) ~ E~.

A causal history is a prefix-closed set of events under the
causal ordering. C(e) contains all events which causally
precede e, i.e., which might have affected e. Note that e'
causally precedes e if and only if there is a directed path in
the time diagram from e' to e. Thus, C(e) essentially con-
tains those events that can reach e along a directed path.
For example, event e23 in Fig. 1 is reachable by e ~ , e~2,
e~3, e21, and e22; hence, C(e23)= { e ~ , e~2, e13, e2~, ez2,
e23 }. A discussion of further interesting properties of
causal histories may be found in [51, 57, 73].

Lemma 2.2. Let e, e' ~ E, e #: e'. Causality and causal his-
tory are related as follows:
(1) e ~ e' iff e eC(e ') .
(2) e [l e ' / f l e e C(e') /x e'$ C(e).

Proof This follows directly from the definition of
C(e). []

Lemma 2.2 states that the causal histories C(e) and
C(e') suffice to determine causality or concurrency of two
events e and e'. Furthermore, there is a straightforward
algori thm that assigns C(e) to every event e of a distributed
computat ion:

(1) Let El = {ell, ei2 , elk} denote the local events of Pi
in s tandard enumeration, and define d u m m y events e~o for
i = 1 , . . . , N such that C(e~o) -- fg .
(2) If e,j e E~ is an internal event or a send event, and
e~ d_ ~ e E~ is its local predecessor, then compute C(e~j) as
follows: C(eifl = C(eid- 1) w {eli}.

Informally, e~j simply inherits the causal history of its
immediate predecessor.
(3) If e/j e E~ is a receive event, s its corresponding send
event, and e~,j_ ~ ~ E~ is the local predecessor of e~, then
compute C(eij) as follows: C(eifl = C(ei,j- ~) w C(s) w { eij }.

Informally, e~ inherits the causal history of both of its
immediate predecessors.

2.2 Vector time

The scheme described above allows to determine causal
histories on-the-fly during a distributed computa t ion by
maintaining sets of events at the processes and by
piggybacking C(s) on the outgoing message for each send
event s. However, the algori thm is only of theoretical
interest, because the size of the causal history sets is of the
order of the total number of events that occur during the

computat ion. Fortunately, the basic scheme can be im-
proved substantially based on the following observation:

O b s e r v a t i o n 2.3. Recall that C(e) = C(e) [1]w "
C(e)[N]. ! f Ek = {ekl ,ekm} is given in standard enu-
meration, then ekj E C(e)[k] implies that ekl, . . , ek,j-1

C(e)[k]. Therefore, for each k the set C(e)[k] is suffi-
ciently characterized by the largest index among its
members, i.e., its cardinalitv. Thus, C(e) can be uniquely
represented by an N-dimensional vector V{e) of cardinal
numbers, where V(e) [kl = J C(e)[k][holds for the k-th com-
ponent (k = 1 N) of vector V(eJ. 2

As an example, the causal history of event e23 in Fig. 1 can
be represented by V(e23) = [3, 3, 01 because the cardinal-
ity of C(e23)[1], C(e23)[2], and C(e23)[3] is 3, 3, and 0,
respectively. Figure 2 depicts a distributed computat ion,
with the associated vectors assigned to each event.

The use of vectors can be generalized in a straight-
forward way to represent an arbitrary prefix-closed event
set X _ E, again by taking the locally largest event index:
V (X) [k l = IX ~Ek[. For notat ional convenience, let the
supremum s u p { v l , . . - , V m } of a set { v l , . . . , v m } of n-
dimensional vectors denote the vector v defined as
v i i i = m a x { v l [i] v,~[i]} for i = 1 n. The fol-
lowing lemma is the key to an efficient implementanon of
the above algorithm:

Lemma 2.4. Let e, e' ~ E denote events, let C{e), C(e')
denote their causal histories, and let V(e), V(e') denote the
corresponding vector representations, respectively. The
vector representation of the union Clel w C(e') is
V(C(e) ~ C(e')) = sup{ V(e), V(e')}.

Proof This follows immediately from the definition of
C(e), V(e), and Observat ion 2.3. ,~

Applying Lemma 2.4, and translating the set operat ions on
causal histories to the corresponding operations on vec-
tors yields an improved versmn of our above-ment ioned
algori thm which maintains vectors instead of sets. In fact,
the resulting algorithm is essentially the same as the one
given in [171 or in [441. There, the vectors defined as in
Observat ion 2.3 are called time vectors, and the general
concept is called vector time. 3 We state the operational
definition from [44] here:

D e f i n i t i o n 2.5. Let P t PN denote the processes of
a distributed computat ion. The vector time ~ of process P~
is maintained according to the following rules:
(1) Initially, V~[k]:= 0 for k = t N.

2 If the number of processes N is not fixed, then V(e) can be repres-
ented by the set of all those pairs (k, I C(e) [k] 1) for which the second
component is different from 0
3 Actually, the concept of vector time cannot be attributed to a single
person. Several authors "re-invented', time vectors for their purposes,
with different motivation, and often without knowing of each other.
To the best of our knowledge, the first applications of "dependency
tracking" vectors [70] appeared in the early 80"s in the field of
distributed database management [21, 74]: In [17] and E44], how-
ever, vector time is introduced as a generalization of Lamport's
logical time, and its mathematical structure and its general properties
are analyzed

P1

P2

P3

0') i g _

1 1

O

Fig. 2. Events with their associated vector timestamps

(2) On each internal event e, process P~ increments V/as
follows: V/[i]:= V/[i] + 1.
(3) On sending message m, P, updates V~ as in (2), and
attaches the new vector to m.
(4) On receiving a message m with attached vector time
V(m), P~ increments Vii as in (2). Next, P~ updates its current
Vii as follows: V/:= sup{V/, V(m)}.
Let V(e) denote the vector time Vii which results from the
occurrence of event e in process P~. V(e) is said to be the
vector timestamp of event e. Accordingly, V(m) denotes the
vector timestamp attached to message m.

It should be clear that the rules of Definition 2.5 specify
a simplified version of the above-mentioned algorithm for
the computation of the causal history C(e) of an event e.
Instead of C(e), the associated vector V(e) is determined
according to Observation 2.3. Obviously, this version of
the algorithm can be realized more efficiently than the
original scheme that manipulates sets of events. The
application of Definition 2.5 is demonstrated in
Fig. 2 which illustrates that timestamps of messages
propagate the knowledge about vector time (and thus
about causally preceding events) along the directed paths
of a time diagram. Since a simple one-to-one correspond-
ence between vector time V(e) and causal history C(e)
exists for all e e E, we can determine causal relationships
solely by analyzing the vector timestamps of the events in
question.

We conclude our discussion of vector time with
a "knowledge-based" interpretation. Informally, the com-
ponent V/[i] of P~'s current vector time reflects the accu-
rate logical time at Pi (measured in "number of past
events" at Pi), while Vii [k] is the best estimate P~ was able
to derive about Pk'S current logical clock value Vk[k].
Thus, if V(e) is the vector timestamp of an event occurring
in Pi, then V(e)[k] is the number of events in Pk which
e "knows about", where "x knows about y" is synonymous
to <'y is in the causal history of x ' .

Postulating an idealized global observer who is instan-
taneously informed about the occurrence of all events
yields another interesting interpretation of vector time.
This "omniscient" observer could maintain a vector clock
a2 defined as f2[i] = V/[i] (for i = 1 , N), thus having
perfect knowledge of all past events at any time. Clearly,
P[s "current knowledge" about each process (represented
by Vii) is only a subset of the omniscient observer's know-
ledge since s = sup{V1 , VN}. However, it should also
be evident that at any time Vii represents the best possible
"approximation" of global knowledge that P~ is able to
obtain within the system.

153

3 Causality and time

Having introduced the concept of vector time, we now
study its relation to causality and real time.

3.1 Characterizing causality with vector Hme

Vector time has several interesting properties, for example,
its mathematical structure is similar to Minkowski's rela-
tivistic space-time [491 in the sense that causal histories
correspond to light cones [44]. Most interestingly, how-
ever, the structure of vector time is isomorphic to the
causality structure of the underlying distributed computa-
tion. In this section, we prove this fact by rephrasing
Lemma 2.2 in terms of time vectors.

Definition 3.1. Let E denote the set of events of a distrib-
uted computation, and let (S, <) denote an arbitrary
partially ordered set. Let ~b:E-+ S denote a mapping.
(1) (4b, <) is said to be consistent with causality, if for all e,
e' e E: q$ (e) < q$ (e') if e -~ e' .
(2) (q$, <) is said to characterize causality, if for all e,
e' ~ E: 4 (e) < 4J(e') i f f e --> e' .

For a given ~b which satisfies (t) or (2) we say for short that
(S, <) is consistent with or characterizes causality.

Note that a partial order (E, <) on the set E of events
which is consistent with causality represents an extension
of (E, --*) (in particular, a linear extension if < is a total
order), and that any partial order (S, <) which character-
izes causality represents an isomorphic embedding of
(E,-+).

Let V = { V (e) l e e E } denote the set of vector time
values assigned to the events of a distributed computation
according to Definition 2.5. We aim at a computationally
simple relation < defined on time vectors, such that
(V, <) characterizes causality.

Definition 3.2. Let u, v denote time vectors of dimension m.
(1) u_-<vif fu[k]<=v[k] f o r k = 1 , . . . , m.
(2) u < v i f f u < v a n d u + v .
(3) u l[v iff -n (u < v) and --7 (v < u).

We will now show that (V, <) in fact characterizes
causality:

Theorem 3.3. For two events e and e' of a distributed
computation, we have
(1) e ~ e ' / f f V(e) < V(e').
(2) e][e ' / f f V(e)l] V(e').

Proof. (1) Suppose that e ~ e' holds. According to Lemma
2.2, e e C(e'); from Definition 2.1 and the fact that -~ is
transitive, it follows that causal histories are left-closed
with respect to ~ , hence we conclude that C(e) c_ C(e').
Thus, C(e)[kl~_C(e')[k], and therefore V(e)[k]=
IC(e)[k][< [C(e')[kl[= r(e')[k] for k = 1 , g . That
is, V(e)<= V(e'). Because~ i s a strict partial order,
e'r Thus, C(e) cC(e ') , and it follows that
V(e) 4: V(e').

154

Conversely, suppose V(e)< V(e'). From Observation
2.3, we learn that C(e)[k] ~_ C(e')[k] for k = 1 , . . . , N, i.e.,
C(e) ~_ C(e'). From V(e) 4: V(e') it follows that e + e': But
e E C(e) c_ C(e'), and therefore e--, e' must hold according
to the definition of C(e').

Property (2) follows immediately from (1) and the def-
inition of concurrency. []

Theorem 3.3 offers a convenient method to determine the
causal relationship between events based on their vector
times. In fact, instead of comparing whole time vectors, the
necessary computations can often be reduced even further,
according to the following lemma. A proof is straight-
forward and may be found, for example, in [27~.

Lemma 3.4. For two events e ~ E~ and e~ ~ E~, e ~ g, we
have
(1) e ~ e ' / f f V(e)[i] < V(e')[i].
(2) e[I e' iff V(e)[i] > V(e')[i] and V(e ')[j] �9 V(e)[j].

Lemma 3.4 states that we can restrict the comparison to
just two vector components in order to determine the
precise causal relationship between two events if their
origins P~ and Pj are known. The intuitive meaning of the
lemma is easy to understand. If the "knowledge" of event e'
in Pj about the number of local events in Pi (i.e., V(e')[i]) is
at least as accurate as the corresponding "knowledge"
V(e)[i] of e in Pi, then there must exist a chain of events
which propagated this knowledge from e at P~ to e' at Pj,
hence e ~ e' must hold. If, on the other hand, event e' is not
aware of as many events in P~ as is event e, and e is not
aware of as many events in Pj as is e', then both events have
no knowledge about each other, and thus they are concur-
rent. Clearly, the converse arguments are equally valid for
both cases.

3.2 Real time and Lamport time

The analysis of causality is closely related to temporal
reasoning. As everyday experience tells us, every cause
must precede its effect. Names such as "happened before"
[361 and "is concurrent with" for relations which are
causal rather than temporal reflect this fact. However, such
a terminology - although quite suggestive - is somewhat
misleading. In this section, we briefly discuss the relation-
ship between time and causality.

Let t(e) denote the real-time instant at which event e of
a given computation takes place. Obviously, idealized real
time (t, <) is consistent with causality; it does not, how-
ever, characterize causality, because t(e) < t(e') does not
necessarily imply e ~ e'. An addit ional problem is that
a set of synchronized local real time clocks, i.e. a proper
realization of an idealized "wall clock", is generally not
available in distributed systems. Fortunately, it is possible
to realize a system of logical clocks which guarantees that
the timestamps derived are still consistent with causality.
This was shown by Lamport in [36].

Definition 3.5. The Lamport time is a mapping L:E---, N
which maps events to integers, defined recursively as
follows:
(1) If e is an internal event or a send event, and e has no
local predecessor, then L(e) = 1; if e has a (unique) local
predecessor e', then L(e) = L(e') + 1.

[i] ~4] i5J [71

P~ i~l e ~ 2 [51
/

P2 e21~x,~j [3] ~ / [4] ~ 22 e23 ~"

P3 w v -
e31 e32 e33

Fig. 3. Events with their associated Lamport timestamps

(2) If r is a receive event and s is the corresponding send
event, and r has no local predecessor, then L(r) = L(s) + 1;
if r has a (unique) local predecessor e', then L (r) =
max{L(s), L(e')} + 1.

Figure 3 shows a distributed computation with Lamport
timestamps assigned to the events. Lampor t time can be
implemented easily with a scheme similar to the one of
Definition 2.5, but with simple integers instead of vectors
[36]. One can easily see that by construction, Lampor t
time (L, <) is consistent with causality. However, as Fig. 3
shows, it does not characterize causality: L(e11)< L(e22)
although el l and ezz are causally independent. Hence,
although Lampor t time implies a natural partial order on
the set of events (by defining that an event e precedes an
event e' iff L(e) < L(e')), this order is different from --+. We
can, however, easily define a linear extension of this im-
plied order, for instance by the following definition.

Definition 3.6. Let e ~ El, e' e E~, and let L(e), L(e') denote
their Lamport timestamps. The total event order
_~ E x E is defined by

(1) If L(e) < L(e'), then e ~ e'.
(2) If L(et =- L(e') and i < j holds, then e ~ e'.

Clearly, IL. ~) is consistent with causality (i.e.. ~ __ ~).
Hence, if we order all events by o , then an event will not
occur prior to any other event that might have caused it.
Therefore, this ordering can be regarded as an acceptable
reconstruction of the linear sequence of atomic actions
that actually took place during the distributed computa-
tion. However, if two events e and e' are concurrent, then

determines just one of several possible, causally consis-
tent interleavings of the local event sequences. Note that
even if tie) < t(e') actually holds for two concurrent events
e and e' - which is, of course, not known within the system

L(e) > L(e') is still possible, as the events e32 and e~t in
Fig. 3 demonstrate. Interestingly, this is not possible for
vector time. If Vie) < V(e') holds, then we necessarily have
tie) < t(e'), whereas nothing about the real-time order can
be derived from Lie) < L(e'L

To summarize our discussion, we remark that
Lampor t time induces an interleaving of the local event
streams which is consistent with causality. Thus. although
not necessarily consistent with real time, Lampor t time
may serve as an adequate substitute for real time with
respect to causality. However, both real time and Lampor t
time are insufficient to characterize causality and can
therefore not be used in general to prove that events are
not causally related. This. however, is quite important for
the analysis of distributed computations. Stronger con-
cepts like vector time are required for that purpose.

4 Efficient realizations of vector time

In the previous section we saw that vector time character-
izes causality. Furthermore, provided that the vector
timestamps of all events are available, Lemma 3.4 offers
a convenient method to compute the relations ~ and II.
The major drawback of vector time is the size of the time
vectors. This might pose problems for massively parallel
computations. In this section, we present some techniques
for an efficient realization of vector time in distributed
computations.

4.1 Compressing message timestamps

According to Definition 2.5, all messages of a distributed
computation have to be tagged with a timestamp of size
N to maintain vector time. If N, the number of processes, is
large, the amount of timestamp data that has to be at-
tached to each message seems unacceptable. Two observa-
tions may lead to a substantial improvement of the basic
technique to maintain vector time:

Observation 4.1. In a distributed computation, we typically
observe the following:
(1) Even if the number N of processes is large, only few of
them are likely to interact frequently by direct message
exchange.
(2) I f we compare an event e with its local successor e', only
few entries of the time vector V(e') are likely to differ from
those of V(e).

The first observation motivates the second, since, if two
processes never directly or indirectly interact, they will
never receive new knowledge about each other's causal
histories, and hence the corresponding vector entries re-
main unchanged.

Based on Observation 4.1, Singhal and Kshemkalyani
[65] propose an improved implementation technique for
vector clocks which typically saves communication band-
width at the cost of slightly increased storage require-
ments. Their idea is to append only those entries of the
local time vector Vii to a message sent to Pj which have
changed since the last transmission to P~. For this purpose,
each process P~ maintains two additional vectors LS~ ("last
sent") and LUI ("last update"). LSi[j] is set to the "local
time" Viii] when P~ sends a message to Pj. LUg[j] is set to
Vi[i] when Pi updates entry Vii i] , which (for i #:j) can
only appear on receipt of a message. Instead of timestamp-
ing each message with V(m) = Vii when sending a message
to Pi (see Definition 2.5), process P, behaves as follows after
incrementing Viii] and setting LU,.[i] to Viii]:
(1) For k = 1 , . . . , N , if LUg[k-1 > LSi[j] then a pair
(k, V~[k]) is added to an (initially empty) set S(m).
(2) The message m is sent together with S(m) to its destina-
tion P;, and LSi[j]:= V/[i].

According to rule (1) above, S(m) contains exactly
those entries of V~ which have been updated since their last
transmission to Pj - the only entries which may cause
a change of Py's local vector Vj. Thus, it is obviously
sufficient to just send S(m) instead of V(m) in order to
maintain the local time vector. Note, however, that F IFO
channels are required; otherwise, the information in S(m)
might be insufficient for a proper update of the receiver's

155

PI

P2

P3

;0j ~ {(2,1), (3,2) 1 2 3 3

0 0 0 "

Fig. 4. Singhal's and Kshemkalyani's method to maintain vector
time

I iol
m l \ [11 2 2] ~ m 2 [2] l:a'-

r 1 r2
scenario 1

P1 02 {(1 2)} 2 2 f3j
P2 m l \ V1] 1 - " "

P3 ~ ~
rl r 2

scenario 2

Fig. 5. Loss of information about the causal relationship between
messages

time vector. Figure 4 shows an example of how the tech-
nique works.

For large systems, the proposed method can result in
substantial savings in communication bandwidth. How-
ever, it suffers from a slight deficiency, as mentioned by
Meldal et al. in [47]. By compressing the message time-
stamps, we lose immediate access to some information
about the causal relationship between different messages
sent to the same receiver. In particular, it is no longer
possible to decide whether two such messages (or, more
precisely, their corresponding send events) are causally
dependent solely by comparing their (compressed) time-
stamps. This is illustrated in Fig. 5. In both scenarios
shown, P3 receives messages mi and m2 at times
V(rl) = [1, 0, l l and V(r2) = [2, 3, 4], respectively; the
compressed message timestamps are S(ml) = {(1, 1)} and
S(m2) = {(2, 3)}. However, in the first scenario ml and m2
are causally unrelated, while in the second m2 causally
depends on m~ because the send event of ml causally
precedes the send event of m2. From Pa's point of view, the
two different scenarios are indistinguishable. Note that if
messages were equipped with the full vector timestamps,
then the receiver P3 would know whether m~ and m2 are
causally unrelated ([1, 0, 0] U [0, 3, 0] in the first scenario)
or not ([1, 0, 01 < [2, 3, 0] in the second scenario). In par-
ticular, P3 would then be able to determine that it received
mx "out of causal order" if in the second scenario ml is
delayed such that it arrives after m2.

156

With compressed timestamps, this is impossible if only
compressed message timestamps are taken into account.
In principle, however, no information is actually lost
because the compression scheme only suppresses those
parts of a message's timestamp which are already known
to the receiver. That is, each process may recover the
original, uncompressed timestamps, but this would require
the collection of some additional information about the
local vector time at which the compressed time-
stamps were received, and about the components of the
local time vector which were last updated. Thus, in
applications like, e.g., causally ordered message delivery
protocols [8, 14,64] where such detailed knowledge is
required, some additional book-keeping and computa-
tional effort is needed to locally restore the suppressed
information. An approach to recover the full timestamp of
each message requiring O(N 2) space at each process may
be found in [65].

4.2 Reconstructing time vectors

In the previous section, it was shown how message time-
stamps can be efficiently coded so as to save communica-
tion bandwidth in typical cases. The technique is especially
valuable if the number N of processes is large, The main
disadvantage, however, is that the size of the message
timestamps is still linear in N in the worst case; also, three
vectors per process are needed instead of just one as in the
basic approach. In this section, we try to further reduce the
amount of data that has to be attached to each message in
order to maintain vector time. However, this comes at the
cost of an increased computational overhead for the calcu-
lation of the time vectors assigned to events. In most cases,
this overhead is probably too large for an on-line compu-
tation because this would slow down the distributed com-
putation in an unacceptable way. The methods described
here might be used, however, for a trace-based off-line
analysis of the causality relation.

Recall that the vector timestamp is just a compact
notation for the causal history of an event. That is, in
principle we can determine the vector timestamp of an
event e by simply computing the set of all events in the
time diagram that can reach e via a directed path. Note
that a time diagram is basically a directed acyclic graph;
for example, Fig. 6 shows the graph resulting from the time
diagram depicted in Fig. 4. There are several well-known
algorithms which compute reachable vertices in directed
graphs. However, these algorithms do not efficiently
exploit the peculiar structure of time diagrams, in par-
ticular:

- In a directed acyclic graph derived from a time diagram,
each vertex (i.e., each event) has at most two direct
predecessors.
- Vertices denoting events occurring in the same process
are totally ordered and thus form a directed path in the
graph. That is, a graph that represents a distributed com-
putation comprising N processes contains N local
"chains,'.

As a result, the general algorithms are too inefficient; the
Floyd-Warshall algorithm, for example, requires O(K 3)
steps to determine the reachability matrix for a directed,

el l el2 e13 el4 el5

e21 e22 e23
/ ~_o/

Fig. 6. Directed graph corresponding :o the time diagram of Fig. 4

acyclic graph containing K vernces [23,72]. For the
special case of time diagrams, more efficient solutions are
feasible.

Figure 7 shows a simple recursive graph searching
algorithm which determines the vector time V(e) of an
event e ~ E. Basically, the algorithm determines V(e) by
applying a recursive "backward search" on the directed
graph, and by counting the events belonging to C(e). Since
GraphSearch is called exactly once for each event in C(e),
the complexity for determining the vector timestamp of
a single event is linear in the number of events.

It should be noted that the algorithm is suited for an
off-line computation of time vectors and causal histories
where the graph corresponding to the time diagram is
available in the sense that each event can provide a pointer
to its non-local predecessor. Reconstructing time vectors
and causal histories after the distributed computation
might be computationally expensive but it avoids the
sending of vector timestamps in messages and the keeping
of local time vectors during the execution of the applica-
tion. It clearly depends on the application whether such an
approach is suitable or not.

The algorithm depicted in Fig. 7 is linear in the "dura-
tion" of the distributed computation, because E increases
as the computation proceeds. Hence. it may take rather
long to reconstruct the time vectors of "late" events. Fortu-
nately, the graph of a distributed computation consists of
N totally ordered chains of events. Therefore, it suffices to
know the most recent predecessor of event e with respect to
each chain in order to determine C(e); indexing all events
in standard enumeration will yield the prefix of each chain,
To exploit this fact, it is required that a process keeps track
of the most recent event in each process which directly
influenced it. As an example, in Fig. 6 the events of each
process which directly affected P~ mos~ recently with re-
spect to event e~5 (namely, el~, ca3 and e32) are depicted as
white dots. By maintaining at runtime a vector D, such
that D(e)[k] denotes the index of the event in Pk which
most recently (with respect to et sent a message to e's
process, we can derive V(e) with even less effort than is
required by the algorithm depicted in Fig. 7.

The approach described here is due to Fowler and
Zwaenepoel [24]. Basically. their "time vectors" only
reflect direct dependencies, white vector time takes into
account also transitive dependencies. By ignoring indirect
causal relationships, it suffices to attach only a single event
index (i.e., a scalar instead of a vector) to each message that
is transmitted. As a disadvantage, transitive causal de-
pendencies must be re-computed for each event. More
specifically, each process P~ maintains a dependency veaor
D~ as follows:

(1) Initially, D~[jl := 0 for all j - t N.

TimeVector (e: Event)

/* Computes the vector time V(e) for event e*/

Assign 0 to all components of V(e);

GraphSearch(e);

return V(e);
end TimeVector;

157

GraphSearch (z: Event

Mark z as visited;

Determine i such that z6 Ei;

V(e) [i] :: V(e) [i] + i;

if z has an unmarked direct local predecessor x6 E i,

then GraphSearch(x) endif;

if z has an unmarked direct non-local predecessor ye Ej, i~ j,

then GraphSearch(y) endif;

Fig. 7. Simple algorithm ~rthereconstruction of V(e)

P1

P2 -

P3

I'! E01 I;/I lI l L0]
0 0 [o [0

Fig. 8. Maintaining direct dependency vectors

(2) On each event occurrence in P~, Di is incremented:
D~[i]:= Dg[i] + 1.
(3) On sending a message m, Pi attaches (the incremented)
value O(m) = Oi[i] to m.
(4) On receiving message m sent by Pj with attached value
D(m), Pi updates Di: Di[j] := max{Di[j] , D(m)}.

Let D(e) denote the dependency vector associated with an
event e, and more particularly, let Di(k) denote the depend-
ency vector Di which results from the occurrence of the
k-th event in process Pi. As with Vi[i], Dill] serves as an
event counter for the local events in P~, i.e., Di(k)[i] = k.
For i +j, Di(k)[j] denotes the sequence number of the
most recent event in Pj (actually, a send event) that directly
influenced the k-th event in P;. Figure 8 depicts the distrib-
uted computation of Fig. 4 with the resulting dependency
vectors. If we compare Fig. 4 with Fig. 8, we observe that
D(e) < V(e) for all e, which is obviously true in general.

In order to determine the transitive causal depend-
encies necessary for the full time vectors, V(e) is derived
from D(e) by recursively retracing the direct dependencies,
i.e., by computing the transitive left-closure of the direct
dependence relation. In [24], Fowler and Zwaenepoel
present a simple procedure which transforms D(e) into the
corresponding V(e). Their method is very similar to the
simple graph searching algorithm presented in Fig. 7; the
main difference is that the events on which an event e dir-
ectly depends are not retraced, but can be addressed
immediately via their index stored in D (e). Figure 9 depicts
the graph of Fig. 6 with the dependency vectors attached
to each event; obviously, the entries of the vectors serve as
pointers to the most recent events which potentially had

ell el2 eI3 el4 e15

] [1] / [d ! 2] [3] ~ 4~ 234]~1 --j
I

0 0 0 0 0 0 [3 3
1 0 2

e21 0 0 0 e22 e23

Fig. 9. Dependency vectors as pointer arrays

influence on the process. By performing a depth-first walk
along each dependence path, using the indices of Di as
pointers to the next relevant predecessor events, Fowler's
and Zwaenepoel's method reconstructs the left-closure of
the direct dependence relation in at most O(M) steps,
where M denotes the total number of messages sent during
the computation. The details of their algorithm and a de-
rivation of its complexity bound may be found in [24].

Recently, Baldy et al. [4] proposed an improved vari-
ant. Basically, their idea is to apply breadth-first retracing
to all dependence paths in parallel instead of following
each single path in a depth-first manner as was proposed
by Fowler and Zwaenepoel. Figure 10 shows the resulting
algorithm. A formal proof of its correctness may be found
in [4]; here, we merely present an informal correctness
argument.

Initially, the algorithm starts with D(e) as a first ap-
proximation of V(e). Consider the first iteration of the
algorithm's outer loop. What the algorithm actually does
is to visit all direct causal predecessors of event e. These
predecessors are directly accessed in the inner loop by
interpreting the components of D(e) as pointers, as shown
in Fig. 9. The components provided by those predecessors'
dependency vectors - i.e., pointers to their respective pre-
decessor events - are taken into account by considering
sup {D(x) lx is pointed at by a component of D(e)} and by
updating the approximation V(e) accordingly. As noted
earlier, Di(k)[i] = k. Therefore, after one iteration of
the outer loop, at least the indices of all immediate

158

VectorTime (e: Event)

/* Computes V(e) for event e in a system of N processes */

V(e) := D(e);

repeat /* outer loop: executed at most N times */

old V := V(e};

for k := 1 to N do /* inner loop: executed N times */

V(e) := sup(V(e), Dk(old_V[k])); /* N comparisons */

endfor

until old_V = V(e) endrepeat;

return V(e)

end VectorTime;

Fig. 10. Algorithm for the conversion of D(e) to V(e) according to Baldy et al

predecessors have been incorporated into Vlel, and Vie)
contains pointers to the predecessors of e at indirection
level 1. By a simple, inductive argument it is easy to see
that after the l-th iteration of the outer loop at least all
predecessor events of e at indirection level l - t have been
determined, and that V(e) contains pointers to those prede-
cessors at indirection level I. It remains to be shown that the
outer loop terminates after a finite number of iterations.

To see why this is in fact the case. recall that if we
follow the dependence path of an event e e Ei back into the
past starting at process Pi, we can stop the retracing as
soon as we come back to some event e' e Ei again since
the dependence paths do not contain cycles, e' is a local
predecessor of e and the past of e' is already contained in
the past of e. Therefore, as soon as the retracing of a de-
pendence path returns to a process which has already been
visited before during the inspection of that path, we can
immediately stop its further retracing. As there are only
N processes and every retracing step of the path must
jump to a process that has not been visited yet. the set of
processes not visited so far is exhausted after at most
N steps. Therefore, the maximum number of steps to
complete the inspection of a single dependence path is N.
The algorithm depicted in Fig. 10 respects all N depend-
ence paths originating at e in parallel; it therefore requires
at most N iterations of its outer loop. Consequently, the
number of execution steps required for the reconstruction
of a single time vector is bounded by O(N 3) which com-
pares favorably to the complexity derived for Fowler's and
Zwaenepoel's original scheme. In fact, according to Baldy
et al. an even more efficient algorithm is feasible which
reconstructs V(e) in at most O(N 2) steps by combining
vector timestamps and Lampor t timestamps, but it re-
quires a more involved and less intuitive derivation. Essen-
tially the same scheme was independently developed by
Masuzawa and Tokura. The interested reader is referred
to [4, 42] for further details.

Like Fowler's and Zwaenepoel's method, the O(N2I
reconstruction algorithm requires random access to all
local event streams. If events occur rarely, and a large
amount of data has to be recorded for each event anyway,
then a reconstruction approach might be advantageous:
a typical example is dependency tracking in distributed
databases. On the other hand, if events occur verv fre-
quently, then it might be impossible to record the complete
event traces which are required for a reconstruction of all

vector dmestamps, even in cases where state-sawng tech-
niques such as those described in [46] are applicable. In
such cases, vector time has to be maintained on-the-fly by
the classical scheme described earlier. Typically, on-line
monitors belong to this type of applications: there, com-
plex reconstruction schemes are prohibitive anyway be-
cause they are too time expensive.

Finally, it should be noted that Fowler's and
Zwaenepoel's original aim was to compute causal distrib-
uted breakpoints rather than vector time. Informally, the
causal distributed breakpoint corresponding to an event
e is defined as the earliest consistent global state that
contains e. That is. in order to guarantee rninimality and
consistency, the breakpoint reflects the occurrence of an
event e' if and only if e' ~ C(e). Hence. causal distributed
breakpoints and causal histories are equivalent. Since
according to Observation 2.3 C(e) is isomorphic to V(e),
this explains why Fowler's and Zwaenepoel's algorithm
and the algorithm depicted in Fig. 10 actually compute
vector time.

4.3 About ~he size of vector clocks

Vector time is a powerful concept for the analysis of the
causal structure of distributed computations. However.
having to deal with timestamps of size N seems unsatisfac-
tory even if we take into account the improvements
suggested in the previous sections. The question remains
whether it is really necessary to use time vectors of that
size. Is there a way to find a "better" timestamping algo-
rithm based on smaller time vectors which truly character-
izes causality?

As it seems, the answer is negative. Charron-Bost
showed in [12] that causality can be characterized on!y by
vector timestamps of size N. More precisely, she showed
that the causal order (E, ~ ~ of a distributed computation
of N processes has in general dimension N. This induces
a lower bound on the size of time vectors because a partial
order of dimension N can be embedded in the partially
ordered set (IR k, < J of real-valued vectors only if k > No
We summarize Charron-Bost 's results:

Definition 4.2. A partial order (X, < ' ~ is said to be isomor-
phically embedded into a partial order (Y. < I if there exists
a mapping qS:X ~ Ysuch that for all x, y s X, ~b(x) < ~b(y)
i f fx < 'y .

Note that according to Definition 3.1, (X, < ') character-
izes causality iff (E, ~) can be isomorphically embedded
into (X, <') .

Definition 4.3. Let (X, <) denote a partial order. A reali-
zer of (X, <) is a set of linear extensions of (X, <) such
that the intersection of all extensions is equal to (X, <).
The cardinality of a smallest realizer of (X, <) is called the
dimension of (X, <), denoted dim(X, <).

We cite Ore's characterization of the dimension of a par-
tial order from [123:

Theorem 404. (Ore) A finite partially ordered set (X, <')
can be isomorphically embedded into (IR k, <) / f and only if
k > dim(X, <').

The following theorem is the key result of [12]:

Theorem 405. For every N there exist processes P1 PN
forming a distributed computation, and a set E of events
produced by that computation, such that dim(E, ~) = N.

For a proof the reader is referred to [12]. What this
theorem actually implies is that, if we represent logical
time by integer-valued vectors and if we use the canonical
vector order < of Definition 3.2 to compare these vectors,
then we need vectors of size N to isomorphically embed
the -+ relation, i.e., to characterize causality - no matter
what scheme is applied to maintain the time vectors.
However, it does not imply that vectors of dimension N
are mandatory! In fact, we can uniquely map each
vector on a (rather large) scalar value and vice versa.
Typically, this will result in scalars which are at least as
"clumsy" as vectors are. But still, it is not immediately
evident that - for a more sophisticated type of vector order
than < - a smaller vector could not suffice to characterize
causality, although the result of Charron-Bost seems to
indicate that this is rather unlikely. At least we have the
following fact [12]:

Corollary 4.6. Let T denote a set of an arbitrary kind of
timestamps assigned to the events of arbitrary computations
of N processes. Any partial order (T, < ') that characterizes
causality must have a dimension dim(T, < ') > N.

Proof. (By contradiction). According to Theorem 4.5,
choose a distributed computation of N processes, such
that dim(E, ~) = N. Suppose that dim(T, < ') = k < N.
Theorem 4.4 states that there exists a mapping ~b: T ~ IRk
which embeds (T, < ') into (IRk, <). If (T, < ') character-
izes causality, we have for all e, e' ~ E:
(11 T(e) <'T(e') iff e --* e'.
(2) O(T(e)) < ~(T(e')) iff T(e) < ' r (e ') .
Putting (11 and (2) together, we obtain ~(T(e)) < q~(T(e'))
iff e ~ e'. Thus, (~b o T) is a mapping that embeds -~ into
(IR k, <), and according to Theorem 4.4 dim(E, ~) <
k < N, which contradicts our choice of E. []

A definite theorem about the size of vector clocks would
require some statement about the minimum amount of
information that has to be contained in timestamps in
order to define a partial order of dimension N on them.
Finding such an information theoretical proof is still an
open problem.

159

5 Characterizing concurrency with concurrent regions

In the previous section, we gave a brief survey of known
techniques to characterize causality by timestamping the
events of a distributed computation. Two main results
were obtained:

- By using vector time, it is possible to faithfully represent
causality.
- Although several refinements to the basic vector time
approach are feasible, timestamps characterizing causality
seem intrinsically complex.

The latter insight is somewhat disappointing, because it
might substantially limit the application of vector time in
practice. Therefore, it is not surprising that alternative
ways to assess causality were pursued. In this section, we
will investigate a popular approach, namely the concept of
concurrent regions.

5.1 Concurrent regions and concurrency maps

For some applications like, for example, the detection of
race conditions in concurrent computations, it is sufficient
to know whether two arbitrary events e and e' occurred
concurrently or not; if e II e' does not hold, then the exact
causal relation (i.e., e ~ e' or e ' ~ e) is irrelevant. One
might suspect that it is cheaper to supply only this re-
stricted form of "concurrency information" instead of the
full causality relation.

Consider, for example, event x of the distributed com-
putation depicted in Fig. 11. All events occurring in the
shaded segments of the time lines of P1 and P2 are causally
independent from x, and therefore, according to Defini-
tion 1.2, concurrent with x. These segments form concur-
rent regions with respect to x. If it were possible to identify
such regions with only little effort, then detecting concur-
rency would be simple!

For a first step towards this aim, it might be useful to
visualize concurrent regions with a concurrency map. This
approach was proposed by Stone, who suggested the use
of concurrency maps to support the visual analysis of
concurrent processes [-68, 69]. To this end, the local event
streams of a distributed computation are partitioned into
so-called dependence blocks. The underlying idea is that all
events contained in a dependence block can be regarded as
a single, atomic "super event", i.e., if one of these events is
concurrent with a non-local event e, then all the other
events occurring in that dependence block are concurrent
with e, too. More formally, let us define an equivalence
relation (E~, ~) on the set of events local to a process Pc as
follows:

P3 O-- @
x

Fig. 11. The concurrent regions with respect to event x

160

PI

P2

P3

history segments

Fig. 12. A concurrency map according to Stone

denendenee Mack

Definition 5.1. For x, y ~ E~, the relation x M y holds if
and only if for all z ~ E\Ei the following conditions are
satisfied:

xLIz i f fy l l z /x

x -~ z iff y--* z /x

z ~ x iff z--* y

The dependence block DB of an event ei; can now be
characterized as an equivalence class with respect to
(E, ~), i.e., DB(eij)::= { x ~ E d x ~ ely}. Note, that this
definition implies that the borders between two depend-
ence blocks on a time line necessarily lie after a send event
and before a receive event.

The causality relation on events induces dependencies
between different blocks. More specifically, the first event
("successor event") of some block may depend on the
occurrence of the last event ("predecessor event") of
another block on a different time line. That is, each send
event is a predecessor event, while the corresponding
receive event is a successor event. The concurrency map
is obtained by partitioning the time diagram by vertical
lines in history segments such that causally dependent
dependence blocks on different process lines occur in
different segments, whereas dependence blocks on different
process lines appearing in the same segment are concur-
rent. Figure 12 shows a concurrency map of the computa-
tion depicted in Fig. 11. For more details about the
construction of concurrency maps, the interested reader is
referred to [-69].

The following transformations which preserve the
causal dependencies may be applied to concurrency maps:

(1) The horizontal size of a dependence block may be
scaled up and down by any factor, as long as blocks on the
same time line do not overlap.
(2) The position of events within a dependence block may
change, as long as their relative order remains untouched.
(3) Dependence blocks may be moved to the right or to
the left; they may even cross the boundary of a history
segment, with the following restriction: The dependence
block of a predecessor event and the dependence block of
the corresponding successor event must always remain
separated by a history segment boundary.

A concurrency map (together with its feasible transforma-
tions) implicitly represents all possible total event order-
ings which are consistent with causality. In [67] it is shown
that for every distributed computation the construction of
a concurrency map is in fact possible, and that for two
given events e and e', e II e' holds if and only if there is

a transformation of the concurrency map such that e and e'
occur in the same history segment. For example, in Fig, 12
event x and event y are clearly concurrent, because accord-
ing to rule (2) we can move x one segment to the left, and
y one segment to the right. Also, x and z are clearly not
concurrent, because according to rule (3) they have to be
separated by at least two segment boundaries.

5.2 Identifying concurrent regions with region numbers

Stone's dependence blocks are good candidates for the
construction of concurrem regions. All that is needed is an
efficient method for the identification of history segments
and a tag for each block that tells us which history seg-
ments the block may possibly enter. If DB(x) may enter the
same history segment as DB(y), then the events x and y are
concurrent, otherwise they are causally dependent.

Ideally, we would like to divide the time diagram of
a given computation into contiguous regions correspond-
ing to dependency blocks, and we would like to assign
some number to each region such that two given events
x and y are concurrent if and only if the numbers of their
respective regions satisfy a simple criterion, Can we assign
appropriate region numbers and define a suitable binary
relation that characterizes concurrency in the sense of the
following definition?

Definition 5.2. Let E denote the set of events of a distrib-
uted computation, let S denote an arbitrary set, and let
~_ S • denote an arbitrary binary relation. Let
b :E-- , S denote a mapping. (@, # } is said to characterize
concurrency, if for all e, e' E E: e e' iff 0(e) # &(e').

For a given ~9, we say for short that (S, # } characterizes
concurrency.

This definition should be compared to Definition 3.1
where the characterization of causality is defined.

Unfortunately, it can be shown that the problem of
characterizing causality is essentially reducible to charac-
terizing concurrency. Note that once we are able to charac-
terize concurrency, we can determine whether two given
events x and v are causally dependent or not; if they turn
out to be causally related, we can simply use Lamport time
to distinguish between x ~ y and y - , x. This shows that
region numbers must have essentially the same complexity
as time vectors. Therefore the results of Sect. 4.3 still apply.
That is, we cannot really hope to gain much by substitu-
ting region numbers for vector time,

For a formal proof of our informal reasoning, let us
assume that we know a mapping r IR, such that 4(e)
denotes the region number of the region to which event
e belongs. Let us further assume that a binary relation
exists, such that (4~, #) characterizes concurrency. In
other words, suppose we are able to identify concurrent
regions with simple real-valued region numbers. If both

and # are computable, then we can show that there
exists an implementation of vector time which only re-
quires vectors of size 2:

Proposition 5.3. Let o : E - ~ I R denote a mapping, and
let # ~ IR x IR denote a binary relation such that (0, #)
characterizes concurrency. Then there exists a mapping

df :E ~ IR x N, and a partial order <' on (IR x N), such that
(q~', < ') characterizes causality.

Proof. Define q~' as follows:

(1) 4'(e):= [~b(e), L(e)], where L(e) denotes the Lamport
time of event e.

Next, define < ' as follows:

(2) 4'(e) <'qS'(e')iff

--n(q~'(e)[1] #q~'(e')[1]) /~ (~Y(e)[2] < ~b'(e')[2]).

According to Definition 5.2, we can restate (2) in terms of
events and their Lamport times:

(2') ~b'(e) <'qJ'(e') iff -n(e II e')/x (L(e) < L(e')).

We note that Lamport time is consistent with causality.
Thus, e ~ e' implies qS'(e) <'q~'(e'). If, on the other hand,
e ~ e' does not hold, it follows that e' ~ e holds implying
L(e') < L(e), or that e IIe' is satisfied. In either case,
~b'(e) <'~b'(e') does not hold according to (2'). As a conse-
quence, (~b', < ') characterizes causality. []

Actually, (~b', < ') is an alternative realization of vector
time. Note that < ' can be computed with almost as little
effort as # . Only one additional vector entry is needed,
and maintaining Lamport time does not require any addi-
tional messages. Note that it is straightforward to extend
Proposition 5.3 to the general case where we take region
numbers from the domain IRk instead of IR. Hence, if there
is a way to implement region numbers based on vectors of
size k which characterize concurrency, we can immediately
derive an implementation of vector timestamps of size
(k + 1) which characterize causality.

As we have seen in Sect. 4.3, there are good reasons to
believe that vector time is inherently complex to compute
and requires vectors of dimension N. Thus, Proposition
5.3 seems to imply that we cannot hope for region numbers
which identify concurrent regions smaller than of size
(N - 1). Anyhow, whatever actual size of vectors is re-
quired for a realization of vector time, region numbers
require vectors of essentially the same size.

An approach for the detection of concurrency based on
comparing the numbers of concurrent regions is described
by Spezialetti and Kearns in [66]. In their model, it is
assumed that there exists an event monitor which observes
the local state changes (i.e., events) and determines global
state changes by combining appropriate concurrent local
events into so-called global events. Consequently, the
problem that has to be solved is to determine whether two
given events are concurrent or not. To this end, so-called
regions are defined local to each process and region num-
bers are attached to each of them, such that two events
e and e' are considered as concurrent if and only if their
corresponding region numbers are equal. Interestingly,
Spezialetti and Kearns base their notion of concurrency on
(N, =), i.e., on integer region numbers and on simple
equality. According to Observation 1.3, however, concur-
rency is not an equivalence relation; it follows that (N, =)
cannot suffice to characterize concurrency. Consequently,
without going into the details of the detection algorithm
presented in [66], our discussion reveals that Spezialetti's
and Kearns' notion of concurrency must be incomplete in

!61

some way or the other. In fact, Cooper and Marzullo [15]
present a simple scenario where the proposed algorithm
fails to detect a global event that actually occurred.

The discussion presented in this section supports our
claim that detecting causal relationships in distributed
computations is far from being trivial. Furthermore, it
shows that it is important to have a clear understanding of
the fundamental characteristics of [[and ~ to avoid
fundamental misconceptions in the approach that is taken
to tackle the problem.

6 Evaluating global predicates

It is often required to know whether for a distributed
computation a certain property holds or does not hold.
Formally, properties are predicates of the global state. An
important application domain for global predicates is the
field of debugging. Typically, the expected behavior or
suspected misbehavior of the system under test is specified
as a global predicate, and debugging is done by checking
whether this predicate is satisfied at runfime or not. In
order to be sensible, the underlying global states on which
predicates are evaluated must be causally consistent - if
the effect of an event is reflected by the state, then its cause
must also be reflected by it. Or, to put it differently, an
observer of the computation must never observe an effect
before its cause. However, as we shall see, it is possibly the
case that different observers see different, mutually exclus-
ive consistent global states. It might thus happen that one
observer establishes the truth of a given predicate, while
another observer does not. This seemingly paradoxical
situation gives rise to a more detailed analysis of the
underlying notions and concepts. It turns out that in
distributed systems, a proper evaluation of global predi-
cates requires a careful consideration of the causal struc-
ture that the computation reveals. In this section, the
impact of causality on global predicate detection is dis-
cussed, and some detection schemes are surveyed.

6.1 Computations, observations, and global states

In the previous sections, we used terms like "observer",
"observation", or "global state" in a rather informal
way. Before continuing our discussion, we need to elabo-
rate these concepts a little further. Our discussion is based
on some notions which have their origin in concurrency
theory and in temporal logic. In particular, the subsequent
presentation shares many concepts with Katz's and
Peled's work on interleaving set temporal logic [33, 34],
with Pratt's geometric model of concurrency [56], and
with Reisig's causality based partial order semantics of
non-sequential systems [60, 61]. It should be noted,
however, that most of these theories are based on more
abstract models (where, for example, the notion of pro-
cesses in the sense of linearly ordered disjoint subsets of
events does not exist), and that a different terminology is
used in most cases.

Informally, a distributed computation is an execution of
a distributed program which consists of communicating
sequential processes. Because of the nondeterminism in-
troduced by varying message delays, a single distributed

162

I - - -
/ ell e 1 2 ~

First observer's view of
the original computation

Observation 1

~tification

Original computation

)tification

Observation 2

'%..) P1 } " ~ 7 " ~ Second observer's view of
�9 P2 ~-- ~ the original computation

e21 e22

Fig. 13. Different but equivalent views of a single, distributed
computation

program usually allows several different computations. If
we assume that each event which appears in the course of a
computation is timestamped with the real-time instant of its
occurrence, then each computation corresponds to a unique
time diagram with real-time axes. Of course, real time is
generally not available, and any observation of the computa-
tion suffers from unpredictable notification delays. Hence,
observations will not preserve the real-time relation be-
tween the events; it is, however, possible to preserve the
causality relation, as will be sketched further down.

If we abstract from real time, then a distributed compu-
tation, i.e., a single execution of a distributed program,
allows different views in the sense of different but equiva-
lent time diagrams, as is shown in Fig. 13. Two time
diagrams are considered equivalent if one can be trans-
formed into the other by stretching or compressing the
process axes (or parts of them) without changing the rela-
tive order of events. Hence, equivalent time diagrams
always represent the same partial order of the causality
relation. It seems plausible to assume that each such time
diagram represents an equally valid view of the computa-
tion, and that any observation which allows such a view is
correct. Therefore, we postulate that an observer is an
entity which observes event occurrences in a strictly se-
quential manner, one after the other. Typically, measures
are taken to guarantee that the observed event sequence is
consistent with causality, i.e., that cause and effect always
occur in the correct order to avoid confusion. This can be
done, for example, by using a causal delivery order proto-
col as will be described in Sect. 7. Basically, such a protocol
ensures that the delivery of notification messages obeys the
so-called triangle inequality [57], requiring that direct
notification paths are always "shorter" than indirect chan-
nels via some intermediate process, such that the direct
messages arrive first and that the event itself is observed
before its effects.

Since any member of a class of equivalent time dia-
grams represents an equally valid view of the computation,
any vertical projection of the events of such a time diagram
onto the hypothetical global time axis represents a valid

observation of the computation. Or, conversely, for a given
causally consistent observation (where the events are
stamped with their "observation time") it is possible to
reconstruct a valid view in the form of a time diagram, as
shown in Fig. 13. This motivates the following definition:

Definition 6.1. An observation of a distributed computa-
tion is a linear extension (E, <<) of the causality relation
(E, ~), such that for all events e ~ E the set {e' ~ El e'<<e}
is finite. An entity that is capable of obtaining a specific
observation is called an observer.

The required finite cardinality of {e' e Ele'<<e} the so-
called axiom off lni te causes [73] ensures that, even for an
infinite set of events~ the observation is fair in the sense that
every event on every process is observed within finite time.

In general, many different observations of a single
computation exist; a special case is a computat ion consist-
ing of only a single process, namely, a sequential program:
Here. exactly one observation is possible. Interestingly, it
follows from Szpilrajn's theorem [71] that the intersection
of all possible observations, i.e., what all observations have
in common, is precisely the causality relation (E, ~ } which
is the essence of the computation. This shows again that
the possible observations are all equivalent with respect to
causality; none of them is superior in reflecting "reality" if
global time is not available.

Usually, a O fobat state of a distributed computation is
defined as a collection of the local states of all processes at
a certain instant o f time (for simplicity, we assume that
messages m transit are appropriately reflected by the local
states of their senders and receiversl. As global time is not
available, we need an adequate substitute for the notion of
a real-time instant - a so-ca!led consistent cut:

Definition 6.2. A finite subset C _ E is called a consistent
cut. iff e ~ C implies e' c C for all e' ~ e.

That is, a consistent cut is a subset of E which is left-closed
with respect to causality. It follows immediately that the
causal history of an event (Definition 2.1) forms a consistent
cut. We can depict a consistent cut in a time diagram by
drawing a c m line which separates C on the left from E\ C
on the right, as shown in Fig. 14. Note that a message can
never cross the cut line of a consistent cut from right to left.
for that would imply that the receive event for that message
belongs to the cut, while the corresponding send event
which, of course, causally precedes the receipt does not.
Conversely, any line which is consistent in the sense that it
cuts the time diagram into a left part and a right part such
that no message crosses the line from right to left defines a
consistent cut. Thus, consistent cuts and consistent cut Iines

P2j

e25
e24

ez2 l' ~ c u t c~

O e l~l e 12~le 1 31"-eel4 el 5 e 16 P!

Fig, 14. A time diagram, the corresponding state lattice, and a path
through thal latuce

163

correspond to each other. Intuitively, a cut line can be
interpreted as an instant of (logical) time that consistently
partitions a time diagram into past and future. It should
also be clear that for a given time diagram with a cut line of
a consistent cut there is always an equivalent time diagram
where the cut !ine forms a straight vertical line. This
motivates again that consistent cuts are adequate substi-
tutes for real-time instants.

It is now possible to define consistent global states as
"current" relative to consistent cuts, i.e., along the corres-
ponding cut line. Informally the global state S(C) of a con-
sistent cut C consists of the local states of all processes
taken just after the last event of each process P~ that
belongs to C (i.e., the right-most event left of the cut line),
or the initial local state if there is no such event. More
formally, S(C) is the global state that is reached by succes-
sively executing all e c C in some linear order that is
consistent with the causality relation, starting from the
initial state. Clearly, causally independent (i.e., concurrent)
events can be executed in arbitrary order without affecting
the final result S(C).

As the events of an observation occur one after the
other, the global state of the computation is evolving over
time. Each event occurrence denotes a global state
transition. At every point of an observation, the set of
events that have been observed so far forms a consistent
cut. Hence, every observation induces a totally ordered
sequence of consistent global states.

The set of all consistent cuts of a computation together
with operations w and ~ has the mathematical structure
of a lattice [32, 44, 51, 73]. Therefore, a convenient method
to graphically represent the consistent cuts of a distributed
computation is an N-dimensional state lattice [13, 15,
44, 56] as shown in Fig. 14. In our two-dimensional
example, each vertical line of the state lattice corresponds
to an event in P~, and each horizontal line represents an
event in P2. An intersection point p = Jell, e2j] of two
event lines denotes the finite set {e11,. �9 �9 ,el~,
e21 e2j} __ E. Of course, this set is not necessarily
a consistent cut. For instance, the point with coordinates
[_e14, e21] denotes a set which contains the receive event
ea4, but not the corresponding send event e23 preceding it.
In the lattice of Fig. 14, all intersections denoting consis-
tent cuts - valid intersection points, for short - are marked
by dots. (Note that a zero coordinate of an intersection
point does not correspond to an event; one may, however,
postulate a dummy event eko for that purpose.) In general,
a distributed computation comprising N processes is rep-
resented by an N-dimensional state lattice. The intersec-
tion points corresponding to an observed event sequence
form a path [33] in the lattice diagram:

Definition 6.3. Let L be the state lattice of a distributed
computation comprising N processes, and let C(p) denote
the consistent cut that corresponds to a valid intersection
point p.
(1) A sequence Po, Pt, Pz of valid intersection points is
called a path through L, if C(po) c C(pl) c C(p2)
and if [C(Pi)[= i for all Pi contained in the sequence.
(2) A path is called complete, if for all e e E some valid
intersection point Pl is contained in that path such that
e ~ C(pi).

As an example, Fig. 14 shows a complete path which
induces the sequence of consistent cuts ~ , {e11},
{ell, e21}, {ca1, e21, e12} {elb e21 e16 , e25 } = E.
Note that every complete path through the state lattice
induces a sequence of events el, e2, e3 , defined by
el = C(pi)\C(p~-I); for the path shown in Fig. 14 we
obtain el , , e21, e,2 e25. Obviously, this sequence
defines a total order on E which is consistent with causal-
ity. Furthermore, it is fair in the sense that every event
e e E has only a finite number of predecessors with respect
to that order. Hence, it satisfies Definition 6.1, and it
follows that every complete path corresponds to an observa-
tion (and vice versa).

Recall that every consistent global state corresponds to
a consistent cut C(p) for some valid intersection point p,
and that there always exists some complete path contain-
ing p. In other words, every consistent global state is
observed by at least one observation (as we would expect).
However, a single complete path does typically not con-
tain all valid intersection points of the state lattice. That is,
a single observation will only reveal a subset of all possible
global states. As a consequence, two observers of the same
distributed computation may observe different sets of con-
sistent global states. For example, state $I corresponding
to cut line C1 in Fig. 14 occurs in observation O, = el~,
e12, e ~ 3 , . . . , but obviously not in observation 02 = e11,
e21, e l z , . . . , corresponding to the path marked in the
figure. This has serious consequences.

Suppose, for example, that two observers simulta-
neously observe the computation shown in Fig. 14 to find
out whether a given predicate ~b defined on the consistent
global states of that computation is satisfied or not. As-
sume further that {b holds only for state $1, but not for any
other possible state. Now, if the first observer makes obser-
vation O1, and the second observer makes observation 02,
then the first observer will conclude that ~b holds, while the
second will claim that the computation failed to satisfy ~.
Which observation is "correct"?

Obviously, none of them! The decision whether a
global state predicate ~b is satisfied in the course of a dis-
tributed computation depends on the specific observation
that it refers to. Therefore, an accurate description of
a predicate's occurrence should be stated as follows: Predi-
cate ~b holds for the set of observations { 0 1 , . . . , Ok} of
the given computation. That is, a specification of ~b should
comprise a qualifier denoting the set of observations that it
covers. The fact that in distributed systems the truth of
a global predicate depends on the observer might be
surprising at the first sight - it is, in fact, a phenomenon
that is unknown in the sequential world where a compu-
tation has only a single valid observation and the validity
of a predicate can thus safely be attributed to the computa-
tion.

6.2 Possibly and definitely

In the previous section, we showed that the specification
of a global state predicate is generally meaningless as
long as it does not refer to a well-defined set of observa-
tions. In [-15], Cooper and Marzullo address this issue, and
they introduce two useful predicate qualifiers, defined as
follows:

t64

Definition 6.4. Let �9 denote a predicate defined on the
global states of a distributed computation, let L denote the
state lattice of that computation, and let "~ holds at p"
mean that �9 holds for the consistent state corresponding
to intersection point p of lattice L.
(1) possibly �9 holds iff there exists a path P through L and
an intersection point p on P such that ~ holds at p,
(2) definitely q~ holds iff every complete path through
L contains an intersection point p such that q~ holds at p.

That is, possibly q~ holds for a given computation if there
exists at least one observation which reveals the satisfac-
tion of ~, and definitely ~b holds if all observations observe
that q~ holds. Note that definitely �9 implies possibly �9 (we
may safely assume that the set of observations is not
empty), and that --7 possibly (-7 cb) implies definitely ~.
Note further that the term "definitely": is somewhat mis-
leading, as it only refers to all observations of one particu-
lar computation, but - due to possible nondeterminism
- not to all computations of a distributed algorithm.

Cooper's and Marzullo's predicate qualifiers are
closely related to some modalities known from modal and
temporal logic [40], For example, there is a direct corres-
pondence between the two qualifiers possibly and definitely
and the sequence quantifiers EF' and AF of Katz's and
Peled's interleaving set temporal logic [33, 34]. Note, how-
ever, that we excluded conflicts from our conceptual
framework. Therefore, we only deal with a single execution
(E, ~) of a distributed system and its possible observa-
tions. This differs from the approach generally taken in
temporal logic; there, all possible executions of a nondeter-
ministic algorithm are considered, and predicates typically
contain additional qualifiers denoting the set of executions
for which the predicate formula holds.

The predicates definitely ~b and possibly �9 are proper-
ties of a computation which do not depend on a specific
observation. Therefore, characterizing a computation by
finding out whether certain predicates can possibly or will
definitely hold is an important aspect of distributed debug-
ging. Typically, we would use definitely to monitor predi-
cates which specify mandatory states of the computation,
for instance: "In each process, the variable Counter must
eventually decrease to zero"; possibly is suitable for the
detection of constraint violations like, for example: "More
than one traffic light shows 'green' at the same time".
Recurrence to the Newtonian model of absolute global
time ~ may be helpful to give a pragmatic meaning to
possibly and definitely. Recall that it is generally impossible
to decide whether an observation reflects the actual real-
time order of event occurrences. Thus~ if we assume that
the events have an immediate effect on some "global envi-
ronment" (e.g., traffic lights on the traffic), then it is not
clear whether an observed sequence of global states is
identical to the one that was actual!YexPerienced by the
environment. With possibly or definitely, however, we can
simulate an "omniscient" observer by considering all pos-
sible observations - i.e., all feasible real-time orders of

'~ As opposed to the relativistic point of view in modern physics
where the existence of absolute time is denied

event occurrences - simultaneously. In our traffic light
scenario, for example, most observers may observe a si&
nalling sequence where (just by chancel at most one traffic
light shows "green' at any instant of time, even though
some feasible real-time order of events would disclose
a lurking bug in the traffic light synchronization.

Interestingly, modal operators like, for example, pos-
sibly or definitely are dispensable for stable predicates,

Definition 6.5. A predicate ~b of a distributed computation
is called stable iff it satisfies the following condition:

If 4~ is satisfied at state S(C) corresponding to some
consistent cut C of the computation, then �9 is satisfied at
S(C') for all consistent cuts C' of the computation such
that C ~ C'.

Stable predicates have the following remarkable property
4see also [13, 33, 34]):

Lemma 6.6. For a stable predicate 4~ defined on the global
states of a distributed computation, possibly ~ and d@niteIy
~b are equivalent.

Proof. As remarked above, definitely �9 implies possibl) cp
Conversely, suppose that possibly ~b holds for a givext
computation. Hence. ~P is satisfied at some intersection
point p of some path P~ where p corresponds to the
consistent cut C[pL Consider an arbitrary complete path
P' through the state lattice. As C(p) is finite and P' is
complete, there exists a point p' on P' such that
C(p) ~-C(p'). According to Definition 6.2, C(p) is left-
closed with respect to the causality relation, hence the
events in C(p')\ C(p) do not causally precede any event in
C(p). Therefore, it is evident that successively removing
minimal elements lwith respect to --, ~ from the finite set
C(p')\ C(p) and adding them to C(p) yields a cut sequence
which corresponds Lo a continuation of path P from p to
p'. From the stability of 4~ it follows that 4~ must hold at p'
on P'. As P' was arbitrarily chosen, the same argument
holds for any complete path through the lattice, which
means that possibly �9 implies definitely qv for stable
predicates. []

Lemma 6.6 shows that a stable property that holds in some
observation will eventually hold in any observation and is
thus observer-independent. This fact can easily be under-
stood by considering the N-dimensional state lattice. Ob-
viously, a stable property holds for all valid intersection
points in an "upper-right" N-dimensional subcube of the
state lattice. If this subcube is not empty, then every
complete path must eventually enter that subcube: if it is
empty, then neither possibly ~ nor definitely �9 are satisfied.
There exists another class of predicates for which it is
possible to generalize from one observer to all observers.
namely predicates which depend on a property local to
a single process [13, 33, 34 I. An in-depth treatment of such
"'observer-independent" predicates may be found in [13].

Because until recently only the detection of stable
predicates was discussed in the literature. Lemma 6.6
might explain why modal operators such as possibly or
d@niteIy were not considered there. It should be noted,
however, that detecting possibly q~ or definitely q~ is quite
different from the classical stable predicate detection prob-
lem [10]. Whereas in the latter case it is usually required

165

that the predicate ~b be stable, and the problem is to detect
the satisfaction of �9 as soon as possible in the course of
a computation, the problem for possibly ~b and definitely
4~ is to decide whether or not a distributed computation
has these properties.

In [15], two algorithms based on vector time for the
detection of possibly ~b and definitely q~ in finite computa-
tions (i.e., computations where E is finite) are presented.
Let us call [C(p)l the level of intersection point p. Basi-
cally, the algorithm for definitely �9 iteratively computes
the sets Ao, AI, A 2 , �9 - �9 where Ai denotes the set of valid
intersection points at level i, such that all p in Ai are
accessible by a path not containing an intersection point at
a smaller level that satisfies q~. Ao contains the origin of the
state lattice; Ai+ 1 comprises those valid intersection points
p for which there exists an immediate predecessor p' s Az
along some path (i.e., C(p') ~_ C(p) and the levels of p and
p' differ by 1) such that ~b is not satisfied at p'. If an A~ is
reached which is empty, then definitely rb holds. If, how-
ever, the maximum level l = I E] of the state lattice is
reached and all elements of Az do still not satisfy q~ (in fact,
At contains exactly one element), then a path through the
state lattice exists such that ~ never holds, and therefore
definitely q~ is not satisfied.

The algorithm for possibly q~ is similar; as soon as A~
contains a member for which rb holds, possibly q) is satis-
fied and the algorithm terminates. Otherwise, Ai+ ~ is com-
puted as above. Both algorithms are based on an efficient
enumeration of the valid intersection points (essentially
a breadth-first search through the lattice), thus they are
linear in the number of valid intersections. Unfortunately,
this can be of order O(KN), where K is the maximum
number of local events per process, and N is the number of
processes. The use of vector time and the immense number
of valid intersections render an on-the-fly application of
the above algorithms almost prohibitive.

As a final remark, it should be noted that possibly and
definitely can be defined without referring to complete
paths, i.e., observations. In [52], Ochmanski introduces
the concept of inevitable global states - an equivalent to
definitely - and extends this notion even to systems for
which an observation in the sense of Definition 6.1 does
not exist; it is, however, doubtful, whether an efficient
algorithm for the detection of inevitability in non-observ-
able systems is feasible. Furthermore, such systems seem to
be of little practical relevance.

6.3 Navigating through the state lattice

Deciding definitely 4~ conceptually requires the inspection
of all paths - or at least all consistent global states - of
the state lattice in the worst case. It is therefore com-
putationally expensive. While in general the situation
for possibly ~b is not much better, there exist certain
predicates ~b for which possibly ~ can be detected quite
efficiently. Garg and Waldecker give a more formal
characterization of these predicates in [26]; in essence,
their definitions comprise global predicates which are
decomposable into locally detectable parts - such as
conjunctions or disjunctions of local predicates - whose
validity can be established in isolation. In the following
we restrict our attention to such predicates ~, and

we present a simple algorithm for the detection of pos-
sibly q).

The basic idea is to navigate through the state lattice,
searching for an intersection point where �9 holds. For an
efficient realization, it is desirable to restrict the search to
only one "dimension" of the lattice as long as possible, and
to change the direction of search only if absolutely neces-
sary. That is, we execute the events of one specific process
until we "hit" a local state that may contribute to the
satisfaction of ~, or until causality constraints force us to
interrupt the execution of that particular process; next, we
freeze that process' local state and continue with a different
process. By executing the computation in such a sequential
fashion, we reduce the computational complexity of the
detection scheme from O(K N) to O(KN), or more pre-
cisely, to O(E). Approaches similar to the one sketched
here are described in [13, 26, 39].

Executing a computation in the proposed manner is,
however, somewhat difficult to achieve in a distributed
system where computations are typically nondetermin-
istic. Blocking all processes but one to obtain the required
sequential execution would generally cause an unbearable
distortion of the system's "normal" behavior. That is, the
so-called probe effect [25] induced by such a method may
lead to a completely abnormal behavior of the system
which would render the conclusions drawn from its obser-
vation almost irrelevant. One way to overcome the prob-
lems induced by observing the processes during execution
might be to collect event-traces in an otherwise undistur-
bed run of the system, and to apply the algorithm sketched
above after the execution. For instance, one could put all
traced events in event queues, one for each process, and
fetch the next event from the respective queue instead of
performing an execution step of a single process. This
approach was taken, for example, by Garg and Waldecker
[26]. The number of relevant events produced in the
course of a distributed computation could be quite sub-
stantial, however, and therefore the queues may rapidly
grow. Furthermore, in a large distributed system the
management of all process queues is likely to become
a bottleneck, and tracing all events may already lead to an
intolerable probe effect.

In order to avoid undue distortions during the original
execution, one solution is to re-execute the computation,
and to generate the events "on demand" only during
replay. Since distributed computations are usually non-
deterministic, an identical reproduction of the system's
behavior requires special precautions. One might, for
example, try to employ a deterministic scheduling disci-
pline to enforce reproducibility of the execution. Unfortu-
nately, centralized scheduling is not appropriate in a
distributed setting as it would severely limit the potential
for parallelism. Therefore, a better solution is to provide
an execution replay facility [37, 38]. This mechanism is
based on a trace of the outcome of all nondeterministic
steps which each process took during an original execution
of the distributed system (e.g., the selection of an incoming
message, or reading some volatile data). During replay,
each process simply consults its trace records whenever
a nondeterministic decision has to be taken~ Thus, by
forcing all processes to reproduce their exact sequence of
nondeterministic execution steps, the original behavior of

166

the system - including its communication pattern is
preserved. Tracing only "nondeterministic events" (instead
of all events which may affect ~b) diminishes the probe
effect, reduces the amount of trace data, and allows to
detect global predicates during replay with virtually no
(logical) detection delay [39]. Moreover, during replay the
execution speed may be reduced in order to match the
observer's processing capacity, and on each re-execution
the observer may concentrate on particular aspects, thus
reducing the space requirements for each analysis.

Execution replay is particularly valuable for the evalu-
ation of global predicates which typically causes substan-
tial overhead in communication and computation. For the
subsequent discussion, we will therefore assume that either
some kind of deterministic replay of the original computa-
tion, or at least a facility for the collection of event traces is
available, such that we can safely study the effect of the
events of each process in isolation, without changing the
observed overall behavior of the system. It should be
noted, however, that the problem of replaying distributed
computations is difficult in its own right, and may require
substantial computational effort. For a more detailed dis-
cussion, see [37, 38, 50].

To continue our discussion of the navigation scheme
sketched above, consider, for example, the distributed
computation depicted in Fig. i4 and the global predicate
~b -= ((x = 1) A (y --- 1)), where x and y are local variables
of P1 and P2, respectively. Note that x = 1 and y = 1 are
two predicates whose truth can be established locally. To
detect possibly q), any assignment to the variables x or y is
a significant event that may affect 4~. We propose the
following algorithm which detects whether possibly

holds for such a "locally decomposable" predicate ~:

(1) Put the system in its initial state.
(2) Check if ~ is satisfied for the current global state.
If so, the detection algorithm terminates with possibly

-=-= TRUE.
(3) Select some executable process P (i.e., a process whose
next execution step does not causally depend on the occur-
rence of a non-local event that has not yet been executed
and thus blocks further local execution) according to the
following preferences:

a) select a process that fails to satisfy its local predi-
cate, s or else

b) select a process that is causing the blocking of some
other process.

If no selectable process exists, the detection algorithm
terminates, yielding possibly �9 = FALSE.
(4) Execute the next step of the selected process P, and
continue until one of the following conditions is met:

a) P's local predicate holds, or
b) P becomes blocked at a receive event, waiting for

the corresponding send event to occur, or
c) P terminates.

r

J It is assttmed that each process whose local state does not affect the
truth of �9 has a local dummy predicate which is always satisfied but
does not contribute to the satisfaction of 4~

e l l e l2 e l3 e14e15 e l6 PI

Fig. 15. Detecting possibly tqx '.} , , = I~} in the compumnoa o;
Fig. 14

[n case a), connnue with s~ep (2 }. In case b~, continue with
step (3). Otherwise/case c), the detection algorithm term-
mates, yielding possibly (b =_ FALSE.

Note that in step (3) of the algorithm, we may be forced to
select a process which already satisfies its local predicate.
However, should such a situanon arise, this means that
there exists some process which is currently blocked and
still has not reached its local predicate. Under these cir-
cumstances, we have no other choice but to continue with
the process that causes the blocking, even if the locat
predicate of that process is then invalidated. The prefer-
ences for the selection of an executable process stated in
step (3) ensure that the algorithm will detect the satisfac-
tion of possibly �9 at the earliest possible "logical moment"~
i.e., at a minimal consistent cut which satisfies ~b.

Figure 15 illustrates the application of the algorithm
for the computation depicted in Fig. 14. In terms of the
state lattice, we select a path through the lattice such that
we move in one dimension (to the right, say) as long as we
can, until we find x = 1 to hold. Next, we move in an
upward direction until y = 1 holds. Only if there is no
valid intersection in the current direction, then we are
forced to circumvent the barrier li.e., the shaded areas in
Fig. 15), and change the current direction. The generaliz-
ation of this method for N-dimensional lattices is straight-
forward, and interpreting the algorithm as a directed walk
through the state lattice guarantees that it is free of cycles
and will eventually terminate. It should also be noted that
one could easily derive a more sophisticated navigation
scheme, where several processes that fail to satisfy their
local predicate are executed in parallel. We leave this
optimization to the interested reader.

For simple global predicates like the one used in the
example above, our algorithm is quite efficient. Provided
we are able to execute the computation in the required
deterministic fashion, no message timestamps and no time
vectors are needed. Using execution replay, there is no
need to explicitly construct the state lattice, which would
require too much space in general: the required causality
information is implicitly represented by the specific way in
which the global state evolves. In the simple example
shown in Fig. 14 and Fig. 15. the navigation algorithm will
inevitably lead us to the global state (els, e25) where

holds.
One drawback of the navigation algorithm is that it

can only check for one global predicate at a time. Another.
more important restriction of this approach is that it will
fail for slightly more sophisticated predicates, as shown m
Fig. 16. Here. each process reaches a local state which may

X:=I X:=4
P1 - - - - -~ @ @ @ @

y : = 2 y : = l

Fig. 16. Detecting possibly ((x = t)/x (y = 1) v (x = 2)/x (y = 2))

contribute to the desired predicate ~b. However, the local
states are contradictory with respect to 4~, i.e., they mu-
tually exclude each other for the predicate to hold. Thus,
as soon as we reach x = 1 in P1 and y = 2 in P2, we have
to decide which process should be continued next. If we
resume P1, then ~b will never hold, but if we resume P2,
then the predicate is eventually satisfied. The example
shows that the simple navigation approach is not generally
applicable for the detection of possibly q~ for arbitrary
global predicates ~.

6.4 Currently r

The discussion in the previous sections revealed that useful
modalities such as possibly are in general computationally
intractable. Except for some special cases where we were
able to derive quite efficient detection schemes, we have to
resort to the general algorithm proposed by Cooper and
Marzullo, as the scenario of Fig. 16 indicates. The fact that
their algorithm considers all possible observations and
may therefore require an immense number of steps rules
out the detection of possibly �9 in many practically relevant
situations. If we consider such intractable predicates, we
have to confine ourselves to simpler, although maybe less
powerful modalities. In [-15], Cooper and Marzullo pro-
pose a modality which is based on a single observation, the
real-time observation of the computation, which we define
as follows:

Definition 6.7. The total order (E, <) of the events of
a distributed computation ordered according to their real-
time occurrence is called the real-time observation of the
computation.

Note that the real-time observation is an observation in
the sense of Definition 6.1. In Sect. 6.1, we pointed out that
from within the system, the real-time observation is indis-
tinguishable from any other observation of the computa-
tion; however, as a distributed computation usually affects
its global external environment, an external observer
might nevertheless be able to identify the real-time order of
all events. Of course, implementing an external real-time
observer might be difficult or even impossible if one has no
control over the observed system. It might, on the other
hand, be possible that the observer is able to force the
system to produce events only in such a way that they are
faithfully observable. This, of course, raises the question to
what degree such an influence of the observer on the
observed system is tolerable - we would certainly not
accept a central scheduler that forces a synchronized se-
quential execution of the computation. In [-15], a qualified
global predicate called currently q) is defined as follows:

Definition 6.8. The global predicate currently ~9 defined on
the local process states of a distributed computation is said

167

to hold, if ~b is still satisfied at the moment at which it is
reported by some dedicated monitoring process.

Thus, monitoring currently ~b addresses both detection
accuracy and detection delay; it aims at a reliable on-the-fly
detection of a global predicate ~, such that the unavoid-
able notification delay will not allow �9 to vanish before it
is recognized. In this respect, currently eb is superior to
possibly ~) which may be detected long after ~ was first
satisfied. To match its intended meaning, currently
q~ should eventually be satisfied if �9 holds at some global
consistent state occurring in the real-time observation of
the computation.

Similar to Spezialetti and Kearns mentioned earlier,
Cooper and Marzullo define events as state changes that
might affect 4~, and they assume a dedicated central
monitoring process M which does not participate in the
computation, but is only responsible for the predicate
detection. In order to detect currently ~b - i.e., to simulate
a real-time observation - certain processes are temporarily
blocked by the monitor M. This may, of course, affect the
behavior of the distributed computation. Therefore, the
monitor may cause the system to perform a computation
that is very unlikely to occur in an unmonitored execution,
although the monitor's intrusion will never lead to a com-
putation that is not feasible in principle in the un-
monitored system. Thus, monitoring wilt only yield
possible, although maybe improbable cases. For applica-
tion domains like, e.g., debugging, the effects of intrusion
are clearly undesirable they are the price we have to pay
for the efficiency of the detection algorithm. In cases,
however, where the detection of global states is an integral
part of the system (e.g., in distributed reactive systems
[-29, 41] where the system itself is essentially a monitor
receiving stimuli from its environment through a network
of sensors, and reacting to these stimuli through actuators)
a moderate amount of intrusion may be tolerable as long
as sufficient potential for concurrency is retained. Cooper's
and Marzullo's algorithm for the detection of currently

can be outlined as follows:

(1) Before the computation starts, the monitor is informed
about the initial state of each process.
(2) Whenever a process executes an event e that could
make ~ true, it (asynchronously) sends the relevant part of
its current state to the central monitor. The monitor main-
tains the latest received state information for each process
of the distributed computation. This rule applies only if e is
not an invalidating event, see next rule.
(3) Whenever a process reaches an event e that could
make ~ false (a so-called invalidating event), it first trans-
fers the relevant part of its local state to the monitor and
blocks before executing the event. On notification, the
monitor then flushes all links from the processes to the
monitor, thereby collecting the most recent local states of
all processes. This is done by sending a REQ message to all
other processes and requiring an immediate ACK. If �9 is
not found to hold by the time all replies have returned,
then the monitor releases the blocked process by sending
an "unblock" message and updates the recorded state of
the blocked process to "undefined". "Undefined" signifies
that the monitor must not draw any conclusions until
it receives new state information from that process. If,

!68

x I = 2 wait_on(x I := [) x 1 := I

P1 ~ : - ~

x 2 = l ~ X 2 "= 2 ~ lOck'' " u n b l ~

@? @?

Fig. 17. Monitoring currently (x~ + x2 > 5) according to Cooper
and Marzullo

x I = 2 wait on(x I := [) x I := !
PI ~ O \ . . : ~ :: , ~ ~-

x 2 = I ~ x 2 = 2 ~ ' b l o c k " X 2 = 3

"REQ,'
nbtoc

�9 7 ~ ? ~P?

Fig. 18. Counter-example: ~--- (xl + x2 > 5) holds but is not
detected

however, 4> holds, then currently 4> is reported and the
algorithm terminates.
(4) On receiving an "unblock" message, a blocked process
executes the event it was waiting at and sends the relevant
part of its new state to the monitor.

The details of the algorithm may be found in [15]. Inter-
estingly, the monitor M does not actually perform a real-
time observation because, according to rule (2), the event
notification messages are not necessarily received in real-
time order by M. However, by flushing all channels on
every invalidating event, the algorithm tries to retain all
essential properties of a real-time observation with respect
to the detection of 4>.

Note that flushing the communication links with
R E Q - A C K pairs requires F IFO channels. Apart from the
rather high number of control messages, the proposed
algorithm is computationally cheap - in particular, it does
not require vector time. Figure 17 shows an example of
how the algorithm works. The reason why a process is
blocked when it tries to (potentially) invalidate �9 is to
allow all other processes enough time to send their latest
local states to the monitor, thus to enable the detection of
a temporary holding of 4> before it can vanish again.

Cooper 's and Marzullo's method is highly intrusive
and may substantially slow down the distributed compu-
tation. The proposed algorithm tries to reduce the
monitoring overhead by restricting the blocking of pro-
cesses to invalidating events. However, if predicates like,
for example, 4> - (xl + x2 = 5) are considered, then each
assignment to x~ or x2 which changes the value of the
variable is an invalidating eventl Thus, invalidating events
may occur very frequently, causing a lock-stepped execu-
tion with many control messages.

Besides these practical issues, there is an even more
important conceptual objection to mention. The proposed

protocol is incomplete in that it can miss predicates zhat
hold in a true real-time observation of the computation.
Figure 18 shows such a case where 4> ~_ (xt + x2 > 5)
occurs but is not detected. In the given scenario, P2
changes its local state to x2 = 3 just after R has replied to
a REQ message, but before the invalidating event x1 := 1
in process P1 occurs. For the short interval marked on the
time line of the monitor the current state of the system is
x2 = 3 and (still) xl = 2; hence 05 holds, but is missed
because at that time the monitor has recorded "undefined"
as the current state of P~o One could try to "fix" the
problem by immediately updating the recorded local state
to the new value as soon as the "block" message arrives at
the monitor. But then again the algorithm misses certain
predicates, as Fig. 17 shows, if we replace the initial assign-
m e n t x ~ = 2 i n P ~ b y x l = 3 .

Obviously, the deficiency remains wiaether the effect of
an invalidating event is defined to occur already during or
only after the interval in which the process is blocked.
Avoiding this problem would require to introduce some
additional blocking. For example, one could block each
process on every relevant event - not just invalidating
events as suggested in [151; alternatively, each process
could be blocked after sending an ACK message, until
4> has been decided. Both methods would, of course, mean
to substantially increase the intrusiveness of the algorithm.
If such an overhead is unacceptable, we have to pretend
that the current state is "undefined" until the next state
update is received after unblocking, thus leaving the ob-
server with a "blind spot" for some predicates which occur.
This is exactly what Cooper and Marzullo do. Then.
however, the notion of a currently true predicate becomes
rather vague - if currently 4> is not detected, then it might
still be possible tha~ a true real-time observation of the
computation would yield the truth of ~. As a consequence,
we do not reach sufficiently trustworthy and meaningful
conclusions by trapping predicate occurrences with the
proposed algorithm.

In summary, the currently qualifier seems only to be
appropriate if the underlying system already comprises
a (possibly distributedt monitor which is responsible for
the collection of global state information, and if the only
global states of interest are those seen b y this monitoring
agent. If, however, our aim is to analyze a given distributed
system by making observations with a minimal impact on
the system's "natural" behavior, then the detection of cur-
rently 4> is too intrusive, and the occurrence of currently
4> (or the lack thereof i is probably not meaningful. The
discussion of currently 4> gwes further evidence for our
claim that in general real tLrne is not appropriate for the
analysis of asynchronous distributed systems.

7 Detecting behavioral patterns

The approaches for global predicate evaluation dis-
cussed So far concentrated on properties of the global
state. Alternatively, we may focus our attention on state
transitions rather than on actual states. Recall that every
event entails a transition from one global state to anothcr~
Thus, by detecting the satisfaction of predicates describing
the relative causal order in which certain events occuri

!69

we may gain sufficient insight into the resulting system
state.

Consider, for example, the distributed traffic lights
control system sketched above, and let event e~ denote
"light i turns green". If the predicate 4} = (el II ez) is satis-
fied at some instant of time during the execution of the
control system, then the system is unsafe because it fails to
guarantee mutual exclusion, even if the actual global state
sequence which is observed by the environment is correct.
For many applications - in particular, for the analysis of
synchronization in concurrent systems - it suffices to
determine the order in which certain events occur in
a computation. Detecting such basic patterns of a system's
behavior and combining them into high-level abstractions
of activity is generally referred to as the behavioral abstrac-
tion approach [5]. In practice, the detection of behavioral
patterns and the detection of global states can be combined
by enriching the events with appropriate local state in-
formation which is passed to a central monitor for evalu-
ation. In fact, current approaches typically apply such
hybrid techniques [9, 48, 54].

One important step towards the detection of behav-
ioral patterns appears in [48]. In this seminal paper, Miller
and Choi define a class of distributed predicates, and they
present a detection algorithm for that class. Their work is
influenced by the event description language EDL proposed
by Bates and Wileden [5], but in contrast to EDL Miller's
and Choi's specification do not require global time. Fur-
thermore, not only the relative order, but also the causal
relationship between events can be expressed in their for-
malism. However, conjunction and disjunction operators
are restricted to combine simple predicates based only on
the state local to a single process. So-called linked predi-
cates that specify event sequences ordered according to
the causality relation can be specified, but concurrency
of events cannot be expressed. Thus, their algorithm
can only detect a limited class of behavioral specifica-
tions. In fairness to their work, it should be noted
that Miller's and Choi's approach works on-the-fly
and does not require complex mechanisms such as vector
time.

Haban and Weigel [27] address the problem of more
sophisticated specifications. They aim at the detection of
arbitrary causal relations between events, and they assume
that vector time is available. Based on some primitive event
specifications denoting local event classes of a single
process, the authors define global event specifications
recursively as follows:

(1) Every primitive event specification is a global event
specification.
(2) If Ga, G2, G3 denote global event specifications, then
GI v G2, Gt /x Gz, GI--,G2, GI[IG2, GI@G2, and
@G3(G1, G2) denote global alternative, conjunctive,
happened-before, concurrent, negation, and between speci-
fications, respectively.

Note the difference between event specifications which de-
note certain classes of events that may occur repeatedly,
and events which belong to a specific event class and have
a unique occurrence. For the rest of this section, we use
capital letters to denote event classes or specifications; if
required, several instances of the same event class are

B t B 2

e21 e22 ~ / ' / ell el2

P2 - - @ ~ ~ ~
~ A2

Fig. 19. Single detection of the global event specification (A ~ B)

C 1 B C 2 D F

P1 el 1 E G

@B(C, D)? @F(E, G) ?

Fig. 20. @B(C, D) and @F(E, G) are detected, but do they really
bold?

distinguished by using upper indices, while lower indices
denote different event classes or specifications.

The satisfaction of a specification is defined recursively.
A primitive event specification G is satisfied if a local event
e of class G has occurred, and the vector time V(G) = V(e)
is assigned to G. A specification G a v G2 holds as soon as
one of its operands is satisfied, and it inherits the time-
stamp of that operand. G a A G 2 requires both operands to
be satisfied, and inherits the timestamp of the operand
most recently detected. G, I] Gz is treated in the same way,
but additionally requires that V(G1)II V(G2) holds. Like-
wise, G1--+G2 requires V(GI)--+ V(G2) to hold, and
V(G 1 --+ G2) is defined to be V(Gz). GI@G2 is satisfied if
G1 holds while G2 does not; V(GI@G2) inherits the time-
stamp of Gl. And finally, @G3(G1, G2) requires that
G1-+ G2 be satisfied, while no G3 exists which satisfies
both G1--* G3 and G3 ~ G2; the timestamp inherited is
that of G2.

The details of the detection scheme may be found in
[27]. An important aspect of the algorithm is its require-
ment that each event may contribute to a global event
specification at most once; i.e., as soon as an event has
been used to satisfy part of a specification, this event is
consumed with respect to that specification. It may, of
course, contribute to the satisfaction of several, distinct
specifications. This rule has a pragmatic background: It
reduces the number of event occurrences that have to be
stored, and it prevents the detection of "redundant" event
occurrences, as Fig. 19 demonstrates, where only a single
occurrence of A --* B is detected (i.e., A 2 ~ B 1 as soon as B t
occurs) instead of all four combinations of A ~ B j that
hold.

Unfortunately, by consuming events and also by allow-
ing the absence of events to denote a global event occur-
rence (i.e., by introducing the negation operator), the
meaning of certain syntactically valid specifications is
defined in a counterintuitive way, as is shown in Fig. 20,
where the processes P1 and P2 are observed by the moni-
tor M. According to the definition given in [27], the
specification @B(C, D), which reads "there is no event of
type B between an event of type C and an event of type D",

170

is satisfied, because the first occurrence C 1 of C is con-
cealed by the second, C 2. Nevertheless, C ~ and D form an
interval such that C a ~ B and B ~ D hold, and therefore
@B(C, D) should rather not hold. The example shows that
the pragmatic decision to consume events may lead to
situations where crucial events are simply ignored.

The transmission delays between the local processes
and the event monitor raise another problem. Consider,
for example, the specification @ F(E, G) in the scenario of
Fig. 20. Here, E ~ F ~ G holds (hence, the specification is
not satisfied), but the notification of the event monitor
M about the occurrence of F suffers from a significant
delay such that a direct transmission from Pa to M takes
longer than a transmission from P1 to M via Pz, violating
the triangle inequality mentioned in Sect. 6.1. Thus, as
soon as E ~ G is detected - and F is not detected in
between - the monitor will reach the conclusion that
@F(E, G) holds, which is, of course, wrong.

Fortunately, this problem can be avoided by using
a causal order delivery protocol to inform the monitor
about event occurrences. That is, i fa notification about the
occurrence of event e reaches the monitor M, it must only
be delivered after the notifications about all events belong-
ing to the causal history C(e) have been delivere& In
Fig. 20, for example, the monitor should delay the delivery
of G until F - which clearly belongs to C(G) - has been
delivered. Causal delivery order at M guarantees that
M has always a consistent view of the global state [1, 63],
i.e., that the sequence of observed events is a linear exten-
sion of the causality relation. There is a straightforward
protocol which implements causal delivery order
[14, 35, 58, 64]:

(1) For each process P~, M maintains a counter
observed[i], initialized to 0.
(2) On receiving a notification message m = (e, i) indicat-
ing the occurrence of event e at process P~ with vector
t imestamp V(e), the delivery of m is delayed until m
becomes deliverable.
(3) m = (e, i) is deliverable iff (observed [i] = V(e)[i] - 1)
and (observed[j] > V(e)[j] for all j 4 = i).
(4) If m = (e, i) becomes deliverable, it is actually delivered
and observed[i] := observed[i] + 1.

To understand why this algorithm is correct recall that
according to Observation 2.3, the vector t imestamp V(e) is
just a shorthand notation for the causal history C(e) of
event e. The vector observed maintained by the above
algorithm counts the number of events at each process
which have been observed so far. What step (3) essentially
requires is that all events of process P~ locally preceding
e have already been observed (thus implementing the
F IFO property for notification messages), and that at least
those non-local events at Pj belonging to the causal history
of e (i.e., ej~, ejv(~)tj~) have already been observed, too.
It follows by induction that this delivery rule ensures
causal delivery order. It is also easy to see that eventually
every notification message becomes deliverable. Thus, by
adding this algorithm to the protocol described in [27],
the satisfaction of specifications like @F(E, G) in Fig. 20
can indeed be correctly detected.

There is a general problem with the occurrence of
global events which are non-atomic - when, exactly, does

/ 01

/ B

P3 | ~"
A

Fig. 21. Is IA i B] ~ C satisfied, or A --~ ~B C}?

such an event "happen"? Tha~ is, what is the appropriate
(logical) t imestamp that should be assigned to its occur-
rence? Consider. for example, Fig. 21. and the specification
(A B) --, C. Is it satisfied? if we suppose that B is detected
later than A, then - according to the definition given in
[27] - it is not because the subexpression (A !1BI inherits
the t imestamp V(B), which means that VIA B) < VfCI
does not hold as required. K however, B is detected before
A, then VIA Bt - V(A), and {A B) ~ C is satisfied.

To exclude such ambiguities, Haban et al. [28] revised
the original definitions of C27]. In particular, they
define V(A B~ = sup{V(A), V{B)} which means that
(A B t - , C does not hold in Fig. 21 regardless of the
order in which A and B are detected. In this new version,
however, the definition lacks symmetry, because now
A ~ (B I C) holds in the example above, whereas
(A B)--, C does not. Intuitively, the meaning of
{A Ii B) - , C should probably be defined as {A B), ' ,
(t A ~ C) v (B--*C)), or maybe tA B ~ A (A ~ C) / ,
(B ~ C). Unfortunately, [t is non-trivial to extend such
definitions to arbitrary compound specifications in
a meaningful way, and the resulting specifications tend to
become rather bulky.

The reason why timestamp inheritance yields counter-
intuiuve semantics in some cases is because global speci-
fications do not generally describe atomic events; rather,
they denote activities which have a non-zero duration,
as illustrated in Fig. 23. Assigning a single t imestamp to
a behavioral pattern essentially means to deny its non-
atomic nature. Consequently, the timestamps of all sub-
expressions should in some way or the other affect
the satisfaction of a global specification. This. however,
rules out simple timestamp inheritance such as those
considered above.

The question of how to specify the occurrence of non-
atomic events is addressed by Fidge in [180 19]. Like
Haban and Weigel, he aims at the detection of significant
global state changes which are characterized by specifica-
tions based on local (i.e., primitive) predicate expressions.
However, instead of assigmng unique time instants to
event specifications as in [27], he proposes to determine
appropriate stare intervals instead. More specifically, two
events s and r are assigned to the occurrence of a primitive
specification G (i.e., to a local state change of a single
process which causes the satisfaction of G); s denotes
the event that leads to the satisfaction of G. and t denotes
the next local event that invalidates G again. G is said
~o be satisfied in the interval I~G)= [s,t]. Foilowing
this approach, Is, t] can safe1 y be regarded as denoting an

171

interval of time - namely, IV(s), V(t)] - during which G is
satisfied. Note that the intervals belonging to primitive
specifications are strictly local to one process. It is straight-
forward to define the following relations between local
intervals t l = Is, t] and I2 = [u, v]:

- 1 1 precedes 12 - t ~ u
- I1 i n c l u d e s I 2 - s ~ u / x v ~ t

I1 and I2 may overlap ==--7 (11 precedes 12)/x--1(12
precedes 11)

Based on these relations, and given two primitive specifica-
tions G~ and Gz with corresponding intervals I(G1) and
I(G2) during which the respective specifications are satis-
fied, we may now define G1 ~ G2 ~ (I(G1) precedes I(G2)) ,
and G1 JI G2 =- (I(G1) and I(G2) may overlap). Similar def-
initions for G~ A G2 as well as for G1 v G2 are feasible as
long as G1 and G 2 a re primitive specifications local to the
same process. The details may be found in [18, 191.

Unfortunately, it is rather difficult - if not impossible
- to extend the relations between primitive specifications
to arbitrary global specifications in a sensible way. In
particular, assigning meaningful intervals to compound
specifications is an open problem. There is, for example, no
obvious choice for the interval which should be assigned to
GI ~ G2, given that I(G1) and I(Gz) are known local
intervals. Note, for instance, that the "natural" choice for
I(G1 ~ G2) - the interval formed by the lower bound of
I(G1) and the upper bound of I(G2) - may comprise
logical time instants (between the upper bound of I(G1)
and the lower bound of I(G2)) at which neither G1 nor G2
holds, which is different from what one would typically
expect. Another problem occurs if a compound specifica-
tion leads to interval fragmentation. Consider, for in-
stance, the specification G1 /x --7 G2, in a situation where
G1 and G 2 a re local to the same process, with I(G1)
including I(G2). Under these circumstances, one would
expect that I(G~ /x - 7 G2) denotes not a unique interval,
but should, in general rather comprise two intervals, both
of which are contained in I(G1), adjacent to /(G2). But
what if I(G~ /~ --7 G2) actually denotes two intervals and
occurs as a subexpression of a more complex specification?
These examples show that it is generally impossible to
reasonably combine primitive specifications in order to
obtain more general global specifications. It seems that
such problems are inherent to all specifications based on
atomic event occurrences, even if time intervals instead of
time instants are used.

Another approach to behavioral pattern detection is
due to Hseush and Kaiser. They propose a formalism
called data path expressions [30] which bears a strong
resemblance to Haban's and Weigel's global event speci-
fications, but avoids most of their problematical aspects
- in particular, negation (like, e.g., Haban's and Weigel's
@ operator) is excluded. (Negation is problematic because
it is often difficult or even impossible to define when
exactly a negated event first "occurs", in particular, if
upper bounds for transmission delays are not known.)
Basically, data path expressions extend generalized path
expressions [9-] with a concurrency operator such that
both causal dependence and causal independence between
event occurrences can be expressed. However, instead of
the "-~ " operator used by Haban and Weigel, only the

weaker sequencin 9 operator " ; " is provided, with ~ B"
defined as "A is an immediate causal predecessor of B". As
an example, Haban's and Weigel's specification
(A ~ B --, C) corresponds to the equivalent data path ex-
pression "A; (A v C)*; B; (A v B)*; C", where "X*" de-
notes zero or more occurrences of subexpression X. Note
that the transitive closure implicit in the causality relation
must be explicitly stated by the data path expression.
Consequently, global event specifications are more
compact than their data path equivalent; an automated
conversion from the former to the latter is, of course,
feasible as long as a specification does not contain the
negation operator. Dealing only with event sequences pre-
vents the need for interval specifications as have been
proposed by Fidge.

For a given data path expression, Hseush and Kaiser
construct an equivalent predecessor automaton which is
able to recognize that expression. Predecessor automata
are similar to, but extend the concept of finite-state auto-
mata. In [30], a rule set for recursively transforming data
path expressions into their recognizing automata is pre-
sented. For brevity, we do not further discuss the concept
of predecessor automata and the recognition process. It
should be noted, however, that predecessor automata can
become quite complex; for example, if we have recognizers
for the data path expressions X and Y which comprise
n (or m, respectively) internal states, then the predecessor
automaton recognizing "X concurrent Y" requires n x m
internal states. Ponamgi et al. have implemented a debug-
ging tool for multithreaded programs based on data path
expressions and predecessor automata [54]. However,
their prototype tool lacks support for a more convenient
specification of high-level patterns of behavior. In [54], it
is also noted that an automatic reduction of data path
expressions would be desirable in order to obtain more
compact predecessor automata, thus making recognition
more efficient. This is particularly important because the
" ~ " operator is not supported directly, but has to be
converted into a series of sequencing operators, yielding
rather complex expressions.

It should be noted that the scheme proposed by
Hseush and Kaiser does not require vector time. In par-
ticular, there is no need to assign time instants (or time
intervals) to each specification as is required by Haban and
Weigel or Fidge. Furthermore, expressing causal depend-
ence with only the sequencing operator avoids ambiguities
like the one depicted in Fig. 19 (note that "A; (A v C)*; B"
is matched exactly once by "A1; A2; BI"), so there is no
need for event consumption. And as Hseush and Kaiser
exclude negation from their formalism, they prevent the
potential problems depicted in Fig. 20. And finally, defin-
ing "(A [[B); C" to require both "A; C" and "B; C" yields
a symmetrical solution for the situation shown in Fig. 21.

As a final remark, it should be noted that the detection
of behavioral patterns requires an anticipation of the sys-
tem's behavior, i.e., a pattern must be specified in advance
to be observable. Unexpected behavior - even if it has the
same effect on the global state as the expected one - is not
captured by the observation. Thus, only selected aspects of
the complex causality structure are revealed. This is quite
different from the general global predicate detection tech-
niques described in previous sections.

172

8 C o n c l u s i o n s

Distributed programs are difficult to develop and to ana-
lyze. This is due to their inherent characteristics such
as parallelism, nondeterminism, and the unavailability of
global state and global time. The fact that these aspects
have still not been completely mastered at the conceptual
level is one of the reasons for the lack of adequate tools for
the design and analysis of distributed systems. However,
distributed computing is almost ubiquitous today. Thus,
there is an urgent demand for more powerful and more
sophisticated programming environments which are able
to overcome the problems arising from distribution in
order to exploit its potential benefits like increased speed,
availability, and reliability. Much work has been dedicated
to this issue, but surprisingly little has been achieved so far.

As we tried to show in this paper, the lack of practical
realizations of adequate tools is - among other reasons
- due to the fact that we still lack appropriate methods to
deal with the complex causality structure of distributed
programs which is the key to understanding their behav-
ior. Fortunately, it seems that the situation is improving
now. At least from a theoretical point of view, causality in
distributed computations is being increasingly well under-
stood. It is now widely accepted that the traditional
Newtonian model of distributed computations, which is
based on the notion of absolute global time, is insufficient
to reflect the relativistic aspects of systems which are
asynchronous, physically distributed, and suffer f rom no-
ticeable communication delays [55~. The partial order
semantics of distributed computations expressed by the
"happened before" relation [36] - as opposed to the tradi-
tional interleaving semantics where an underlying total
order of event occurrences (i.e., the "real-time order,) is
implicitly assumed - triggered major progress in the the-
ory of distributed computing. As a result, different types of
logical clocks were proposed to capture some notion of
causality, culminating in the advent of vector time and
a general definition of consistent global states, Unfortu-
nately, the theoretical insight into the relativistic nature of
distributed computations failed to entail a corresponding
stimulus on the development of actual tools. This reluc-
tance to apply the new findings has several reasons.

First of all, there exists no well-established, agreed-
upon formalism for reasoning about causality in distrib-
uted systems, and the system models found in literature
often lack conciseness and differ substantially. This "Babel
of languages" impedes the exchange of knowledge and
experience, and makes published results difficult to assess.
As a Consequence, the relativistic nature of the compound
system formed by the observer and the observed is not yet
sufficiently understood by the computing community.
Therefore, many approaches suffer from slight misconcep,
tions. For example, it is often not taken into account that
different observers typically observe different global states
of the system; states and state transitions, or atomic and
non-atomic events are often confused, causing severe
shortcomings. A second reason for the lack of suitable
tools is the complexity inherent to the causality structure,
which leads to tool designs dominated by efficiency con-
siderations. In the past, this prevented, for example, the
widespread use of vector time, and provoked dubious

"optimizations" like monitoring the absence of events, or
consuming event occurrences. Finally and maybe most
importantly - the theoretical insights gained so far are
almost discouraging. The intricacy of distributed compu-
tations exceeded common expectations. For example.
there seems to be no representation of causality more
compact than vector time. Instead of simplifying matters~
the known results rather seem to muddy the waters, and
the lack of global control in distributed computations, the
inherent nondeterminism preventing their reproducibility,
as well as the overwhelming amount of information which
is essential for their analysis further exacerbates the prob-
lems. Thus. current experience confirms our claim that
distributed programming is still an art rather than a welP
established technique.

Our discussion indicates several possiNe directions of
future work. One aim could be a relaxaticn of the causality
relation. Recall that --, indicates potential, but no actual
causal relationships. Events occurring at the same process~
for example, are totally ordered by the causality relation.
although some of them are presumably not causally re-
lated. One of the reasons why most contemporary work
only considers potential causality - or essential ca usality,
as it is called in [33] is that the order Of events within
each process is uniquely determined by the local thread of
control. It may therefore be argued that although not
causally enforced, the local event order is in fact total all
observers of a process will see the same sequence of events.
Another argument is that, from a technical point of view.
causality tracking and the ~robtem of deciding whether
two events are causally related is much more involved for
actual causality than for potential causality; hence one
would expect that the conceptual and practical problems
discussed in this paper are even more intricate for actual
causality. Nevertheless, it may be interesting to investigate
the potential benefits of actual causality (such as indicating
potential intra-process concurrency and yielding more ac-
curate debuggang information on the cause for unexpected
observed behaviori, and to find means to handle the more
sophisticated structure of actual causality. In [3], Ahuja
et al. discuss these aspects and propose a timestamping
scheme which reflects actual causality.

In contrast to these considerations., one might try to
find a timestamping scheme which yields a partial event
order somewhat stricter than the order induced by vector
time. but which relaxes the (total} order of Definition 3.6
derived flom Lamport time. The aim is to trade accuracy
for ease of computation. In [16], Diehl and Jard propose
interval orders [221 as a means to obtain event timestamps
of pairs of integers with relatively little computational
effort. If the causal structure of a distributed computation
is in fact that of an haterval order, then their scheme yields
timestamps which actually characterize causality. In gen-
eral, however, this condition is not satisfied. Nevertheless,
it might be fruitful to develop new progrm~ammg para-
digms which induce causal orders that are guaranteed to
be as easy to handle as, for example, interval orders.

A different approach is pursued by Meldal et al. in
[473. Like Diehl and Jard, they aim at a more efficient
computation of the causality relation by restricting the
problem domain. Their work is based on the observation
that for some applications causal relationships are only of

173

interest for messages tha t are sent to the same des t ina t ion
process; fur thermore , communica t i on pa ths are often
stat ic and k n o w n at compi le time. Thus, by explo i t ing
the logical s t ructure of the computa t ion , and also the
physical s t ruc ture of the ne twork on which the c o m p u t a -
t ion is executed, subs tan t ia l savings in commun ic a t i on
cost and s torage requi rements are achievable. On ly pa r t of
the causa l i ty in fo rmat ion is requi red because some dy-
namic causal re la t ionships can be inferred from the given
static structures, while others are k n o w n to be i r re levant
for the ma t t e r at hand. The feasibil i ty of this technique
depends, however , on the pa r t i cu la r system under consid-
erat ion.

In this paper , we surveyed some representa t ive
app roaches to the p rob l em of de te rmin ing causal re la t ion-
ships in d i s t r ibu ted computa t ions . The discussion shed
some light on the ma in p rob lems and some fundamenta l
l imi ta t ions ar is ing in this research area. We saw tha t none
of the presented schemes is sufficiently ma tu re to serve as
a genera l -purpose mechan i sm for the analysis of causal i ty.
Ideal ly, a tool should combine the speed and re l iabi l i ty of
a u t o m a t e d de tec t ion with the h u m a n in tu i t ion and flexi-
bility. The p r o b l e m of an t ic ipa t ing the re levant behavior ,
ass igning meaningful semant ics to general g lobal predi-
cates, and f inding correct and efficient a lgor i thms for their
detect ion, remains to be a challenge.

It seems tha t d i s t r ibu ted compu ta t i ons are in t r ins ical ly
difficult to unders tand , and perhaps a s imple way to de-
scribe their behav io r does no t even exist. Anyhow, the ho ly
grail of causal i ty analysis has no t been found yet.

Acknowledgements. The work presented in this paper has been
stimulated by many colleagues who provided us with insightful
suggestions for improvement and pointers to further relevant work.
In particular, we would like to thank the anonymous referees, and
also Ken Birman, Bernadette Charron-Bost, Claire Diehl, Stefan
Fiinfroeken, Claude Jard, Horst Mehl, and Michel Raynal for their
valuable comments on earlier versions of this paper.

References

1. Acharya A, Badrinath BR: Recording distributed snapshots
based on causal order of message delivery. Inf Process Lett 44:
317 321 (1992)

2. Ahamad M, Hutto PW, John R: Implementing and program-
rning causal distributed shared memory. Proc 11th Int Con-
ference on Distributed Computing Systems, Arlington, Texas,
pp 274-281, 199t

3. Ahuja M, Carlson T, Gahlot A, Shands D: Timestamping events
for inferring 'affects' relation and potentia! causality. Proc 15th
IEEE Int Computer Software and Application Conference
COMPSAC 91, Tokyo, pp 606-611, 1991

4. Baldy P, Dicky H, Medina R, Morvan M, Vilarem JF: Efficient
reconstruction of the causal relationship in distributed computa-
tions. Technical Report 92-013, Laboratoire d'Informatique, de
Robotique et de Micro61ectronique de Montpellier, Montpellier
i992

5. Bates PC, Wileden JC: High-levei debugging of distributed sys-
tems: the behavioral abstraction approach. J Syst Softw 4(3):
255-264 (1983)

6. Birman K, Joseph T: Exploiting virtual synchrony in distributed
systems. Operating Syst Rev 22(1): 123-138 (1987)

7. Birman K: The process group approach to reliable distributed
computing. Technical Report, Computer Science Department,
Cornel1 University, Ithaca, New York 1991

8. Birman K, Schiper A, Stephenson P: Lightweight causal and
atomic group multicast. ACM Trans Comput Syst 9(3): 272-314
(1991)

9. Bruegge B, Hibbard P: Generalized Path Expressions. J Syst
Softw 2(2): 265-276 (1983)

10. Chandy KM, Lamport L: Distributed snapshots: determining
global states of distributed systems. ACM Trans Comput Syst
3(1): 63-75 (1985)

11. Charron-Bost B: Combinatorics and geometry of consistent
cuts: application to concurrency theory. In: Bermond JC, Raynal
M (eds) Distributed algorithms. LNCS, vol 392. Springer, Berlin
Heidelberg New York 1989, pp 45 56

12. Charron-Bost B: Concerning the size of logical clocks in distrib-
uted systems. Inf Process Lett 39:11-16 (1991)

13. Charron-Bost B, Delporte-Gallet C, Fauconnier H: Local and
temporal predicates in distributed systems. Technical Report,
LITP, IBP, Universit6 Paris 7, Paris 1992

14. Charron-Bost B, Mattern F, Tel G: Synchronous, asynchro-
nous, and causally ordered communication. Distrib Comput
(to appear)

15. Cooper R, Marzullo K: Consistent detection of global predi-
cates. Proc ACM/ONR Workshop on Parallel and Distributed
Debugging, Santa Cruz, California 1991, pp 163-173

16. Diehl C, Jard C: Interval approximations and message causality
in distributed systems. In: Finkel A, Jantzen M (eds) Proc of the
9th Annual Symposium on Theoretical Aspects of Computer
Science STACS '92, LNCS, voI 577. Springer, Berlin Heidelberg
New York 1992, pp 363-374

17. Fidge CJ: Timestamps in message-passing systems that preserve
the partial ordering. Proc 11th Australian Computer Science
Conference, University of Queensland, pp 55-66, 1988

18. Fidge CJ: Partial orders for paralM debugging. ACM SIG-
PLAN Notices 24(1): 183-194 (1989)

19. Fidge CJ: Dynamic analysis of event orderings in message pas-
sing systems. PhD Thesis, Department of Computer Science,
Australian National University, Canberra 1989

20. Fidge CJ: Logical time in distributed computing systems. IEEE
Comput 24(8): 28-33 (1991)

21. Fischer M J, Michael A: Sacrificing serializability to attain high
availability of data in an unreliable network. Proc ACM
SIGACT-SIGOPS Symposium on Principles of Database Sys-
tems, pp 70-75, 1982

22. Fishburn PC: Interval orders and interval graphs. Wiley, New
York 1985

23. Floyd RW: Algorithm 97, shortest path. Commun ACM 5:345
(1962)

24. Fowler J, Zwaenepoel W: Causal distributed breakpoints. Proc
10th Int Conference on Distributed Computing Systems, Paris,
pp 134-141, 1990

25. Gait J: A probe effect in concurrent programs. Softw Pract Exper
16 (3): 225-233 (1986)

26. Garg VK, Waldecker B: Detection of unstable predicates in
distributed programs. In: Shyamasundra R (ed) Proc 12th
Conference on the Foundation of Software Technology and
Theoretical Computer Science, LNCS, vol 652. Springer, Berlin
Heidelberg New York 1992, pp 253-264

27. Haban D, Weigel W: Global events and global breakpoints in
distributed systems. Proc 21st Annual Hawaii Int Conference on
System Sciences, pp 166-175, 1988

28. Haban D, Zhou S, Maurer D, Wilhelm R: Specification
and detection of global breakpoints in distributed systems.
Technical Report SFB124-08/1991, Universitfit des Saartandes,
Saarbriicken 1991

29. Harel D, Pnueli A: On the development of reactive systems. In:
Apt K (ed) Logics and modeIs of concurrent systems, NATO ASI
Series F, vol 13. Springer, Berlin Heidelberg New York 1985,
pp 477-498

30. Hseush W, Kaiser GE: Modeling concurrency in parallel debug-
ging. ACM SIGPLAN Notices 25(3): 11-20 (1990)

31. Hutto P, Ahamad M: Slow memory: weakening consistency to
enhance concurrency in distributed shared memories. Proc 10th

174

tnt Conference on Distributed Computing Systems, Paris, pp
302 309, 1990

32. Johnson DB, Zwaenepoel W: Recovery in distributed systems
using optimistic message logging and checkpointing. J Algo-
rithms 11(3): 462-491 (1990)

33. Katz S, Peled D: Interleaving set temporal logic. Theor Comput
Sci 75:263-287 (1990)

34. Katz S, Peled D: Verification of distributed programs using
representative interleaving sequences. Distrib Comput 6:
107-120 (1992)

35. Kearns JP, Koodalattupuram B: Immediate ordered service in
distributed systems. Proc 9th Int Conference on Distributed
Computing Systems, Newport Beach, California, 611-618, 1989

36. Lamport L: Time, clocks, and the ordering of events in a distrib-
uted system. Commun ACM 21(7): 558 565 (1978)

37. LeBlanc TJ, Mellor-Crummey JM: Debugging parallel pro-
grams with instant replay. IEEE Trans Comput 36(4): 471 482
(1987)

38. Leu E, Schiper A, Zramdini A: Efficient execution replay for
distributed memory architectures. In: Bode A (ed) Proc 2nd
European Distributed Memory Computing Conference, Munich,
Germany, LNCS, vo1487. Springer, Berlin Heidelberg New York
1991, pp 315-324

39. Manabe Y, Imase M: Global conditions in debugging distrib-
uted programs. J Parallel Distrib Comput t5:62-69 (1992)

40. Manna Z, Pnueli A: The temporal logic of reactive and concur-
rent systems. Springer, Berlin Heidelberg New York 1992

41. Marzullo K, Neiger G: Detection of global state predicates. In:
Toueg S, Spirakis PG, Kirousis L (eds) Proc 5th Workshop on
Distributed Algorithms (WDAG-91), Delphi, Greece, LNCS, vol
579. Springer, Berlin Heidelberg New York I991, pp 254-272

42. Masuzawa T, Tokura N: A causal distributed breakpoint algo-
rithm for distributed debugger. Proc ICICE Fall Conf (SD-t-8)
6:373-374 (1992)

43. Mattern F: Algorithms for distributed termination detection.
Distrib Comput 2:161-175 (1987)

44. Mattern F: Virtual time and global states in distributed systems.
In: Cosnard M et al. (eds) Proc Workshop on Parallel and
Distributed Algorithms, Chateau de Bonas, Oct. 1988, Elsevier,
North Holland, 1989, pp 215-226

45. Mattern F: Efficient algorithms for distributed snapshots and
global virtual time approximation. J Parallel Distrib Comput 18:
423-434 (1993)

46. Medina R: Incremental garbage collection of causal relationship
computation in distributed systems. Proc 5th IEEE Symposium
on Parallel and Distributed Processing, Irving, Texas, 1993

47. Meldal S, Sankar S, Vera J: Exploiting locality in maintaining
potential causality. Proc 10th Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Canada, pp
231-239, 1991

48. Miller BP, Choi JD: Breakpoints and halting in distributed
programs. Proc 8th Int Conference on Distributed Computing
Systems, pp 316-323, 1988

49. Minkowski H: Raum und Zeit. In: Lorentz HA, Einstein A,
Minkowski H: Das Relativit~tsprinzip. Eine Sammlung yon Ab-
handlungen. Teubner, Leipzig 1915, pp 56 68

50. Netzer RHB, Miller BP: Optimal tracing and replay for debug-
ging message-passing parallel programs. Proc Supercomputing
'92, Minneapolis, pp 502-511, t992

51. Nielsen M, Plotkin G, Winskel G: Petri nets, event structures
and domains, part I. Theor Comput Sci 13:85-108 (1981)

52. Ochmanski E: Inevitability in concurrent systems. Inf Process
Lett 25:221-225 (1987)

53. Panangaden P, Taylor K: Concurrent common knowledge: de-
fining agreement for asynchronous systems. Distrib Comput
6(2): 73-93 (1992)

54. Ponamgi MK, Hseush W, Kaiser GE: Debugging multithreaded
programs with MPD. IEEE Software, 8(3): 37-43 (1991)

55. Pratt V: Modeling concurrency with partial orders. Int J Parallel
Program 15(1): 33-71 (1986)

56. Pratt V: Modeling concurrency with geometry. Proc 18th An-
nual Symposium on Principles of Programming Lang~iages
(POPL-91), pp 311-322, 1991

57. Pratt V: Arithmetic + Logic + Geometry = Concurrency. in:
Simon I (ed) Proc LATIN "92, LNCS, vol 583. Springer, Berlin
Heidelberg New York 1992, pp 430-447

58. Raynal M, Schiper A, Toueg S: The causal ordering abstraction
and a simple way to implement it. Inf Process Lett 39:343-350
(1991)

59. Reisig W: A strong part of concurrency. In: Rozenberg G (ed)
Advances in Petri nets, LNCS, vol 266. Springer, Berlin Heidel-
berg New York 1987, pp 238-272

60. Reisig W: Temporal logic and causality in concurrent systems.
In: Vogt FH (ed) Proc Concurrency '88, LNCS, vol 335. Springer,
Berlin Heidelberg New York 1988, pp 121-139

61. Reisig W: Parallel composition of liveness. Technical Report
SFB342/30/91A. Technische Universit~t Mfinchen, Mfinchen
1991

62. van Renesse R: Causal controversy at Le Mont St-Michel. ACM
Operating Syst Rev 27(21:44-53 (1993)

63. Sandoz A, Schiper A: A characterization of consistent distrib-
uted snapshots using causal order. Technical Report 92-t4~
D~partement d'Informatique, Ecole Polytechnique F+dbrale de
Lausanne. Lausanne 1992

64. Schiper A, Eggli J, Sandoz A: A new algorithm to implemen~
causal ordering. In: Bermond JC, Raynal M (eds/ Proc Work-
shop on Distributed Algorithms. Nice, France, LNCS. vol 392.
Springer, Berlin Heidelberg New York 1989, pp 219-232

65. Singhal M. Kshemkalyani A: An efficient implementation of
vector clocks. Inf Process Lett 43:47 52 (1992)

66. Spezialetti M, Kearns JP: Simultaneous regions: a framework for
the consistent monitoring of distributed systems. Proc 9th Int
Conference on Distributed Computing Systems, Newport Beach,
California~ pp 61-68. 1989

67. Stone JM: Visualizing concurrent processes. Technical Report
RC 12973, IBM TJ Watson Research Center 1.987

68. Stone JM: Debugging concurrent processes: a case study. Proc
SIGPLAN Conf on Programming Language Design and. Imple-
mentation, Atlanta, Georgia, pp 145-153. 1988

69. Stone JM: A graphical representation of concurrent processes.
ACM SIGPLAN Notices 24(1): 226-235 (1989)

70. Strom R, Yemini S: Optimistic recovery in distributed systems.
ACM Trans Comput Syst 3(3): 204-226 (1985)

71 Szpilrajn E: Sur l~ de l'ordre partielo Fund Math 16:
386-389 (1930~

72. Warshall S: A theorem on Boolean matrices. J ACM 9:11- i2
1962)

73. Winskel G: An introduction to event structures. In: de Bakker
JW, de Roever WP. Rozenberg G (eds) Proc Workshop on
Linear Time. Branching Time and Partial Order in Logics and
Models for Concurrency, Noordwijkerhout. The Netherlands.
LNCS~ vol 354. Springer, Berlin Heidelberg New York 1988. pp
364-397

74 Wuu GTJ, Bernstein AJ: Efficient solutions to the replicated log
and dictionary problems. Proc ACM Symposium on Principles
of Distributed Computing, pp 233-242. 1984

