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veyed. The issue of observing distributed computations in 
a causally consistent way and the basic problems of detect- 
ing global predicates are discussed. To illustrate the major 
difficulties, some typical monitoring and debugging 
approaches are assessed, and it is demonstrated how their 
feasibility is severely limited by the fundamental problem 
to master the complexity of causal relationships. 
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Summary. The paper  shows that characterizing the causal 
relationship between significant events is an important  but 
non-trivial aspect for understanding the behavior of dis- 
tributed programs. An introduction to the notion of 
causality and its relation to logical time is given; some 
fundamental results concerning the characterization of 
causality are presented. Recent work on the detection of 
causal relationships in distributed computations is sur- 
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1 Introduction 

Today, distributed and parallel systems are generally 
available, and their technology has reached a certain 
degree of maturity. Unfortunately, we still lack complete 
understanding of how to design, realize, and test the soft- 
ware for such systems, although substantial research effort 
has been spent on this topic. It seems that implementing 
distributed programs is still an art rather than an engineer- 
ing issue; understanding the behavior of a distributed 
program remains a challenge. One of the main reasons for 
this is the nondeterminism that is inherent to such pro- 
grams; in particular, it is notoriously difficult to keep track 
of the various local activities that happen concurrently and 
may (or may not) interact in a way which is difficult to 
predict - leading to, for instance, potential synchroniz- 
ation errors or deadlocks. 

For  a proper understanding of a distributed program 
and its execution, it is important  to determine the causal 
and temporal relationship between the events that occur in 
its computation. For example, it is often the case that two 
concurrent or causally independent events may occur in 
any order, possibly yielding different results in each case. 
This indicates that nondeterminism is closely related to 
concurrency. In fact, the effects of concurrency and non- 
determinism play an important  rote in the process of 
analyzing, monitoring, debugging, and visualizing the be- 
havior of a distributed system. 
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Distributed systems are loosely coupled in the sense 
that the relative speed of their local activities is usually not 
known in advance; execution times and message delays 
may vary substantially for several repetitions of the same 
algorithm. Furthermore, a global system clock or perfectly 
synchronized local clocks are generally not available. 
Thus, it is difficult to identify concurrent activities in 
distributed computations. In this paper, we show how the 
notion of concurrency can be based on the causality rela- 
tion between events. The characterization and efficient 
representation of this relation is a non-trivial problem. In 
the sequel, we survey several approaches for the analysis of 
the causality relation and related concepts such as logical 
time or global predicates which are crucial for the under- 
standing of distributed computations. 

1.I System model: events, time diagrams, and causality 

We use a widely accepted model where a distributed system 
consists of N sequential (i.e., single-threaded) processes 
P1 . . . . .  Pu communicating solely by messages.1 The local 
states of all processes are assumed to be disjoint, i.e., 
processes do not share common memory. The behavior of 
each process consists of local state changes, and of the 
sending of messages to other processes; these actions are 
completely determined by a local algorithm which also 
determines the reaction to incoming messages. The con- 
current and coordinated execution of all local algorithms 
forms a distributed computation. For  the rest of this paper, 
we assume that communication between processes is 
point-to-point, and that message transfer may suffer from 
arbitrary non-zero delays. We do not assume F I F O  order 
of message delivery unless explicitly stated. Furthermore, 
we do not assume the availability of a global clock or 
perfectly synchronized local clocks. 

The occurrence of actions performed by the local algo- 
rithms are called events. From an abstract point of view, 
a distributed computat ion can be described by the types 
and relative order of events occurring in each process. Let 
E~ denote the set of events occurring in process P~, and let 
E = E~ w �9 �9 " u EN denote the set of all events of the 
distributed computation. These event sets are evolving 
dynamically during the computation; they can be obtained 
by collecting traces issued by the running processes. As we 
assume that each P~ is strictly sequential, the events in E~ 
are totally ordered by the sequence of their occurrence. 
Thus, it is convenient to index the events of a process P~ in 
the order in which they occur: Ei = {ela, e~2, e~3.. �9 }. We 
will refer to this occurrence order as the standard enumer- 
ation of E~. 

For  our purposes, it suffices to distinguish between 
three kinds of events: send events, receive events, and 

1 A fixed number of processes is assumed mainly for notational 
convenience; a generalization of our model to a dynamically chang- 
ing set of processes is straightforward. One could, for example, model 
dynamically created (or destroyed) processes as being silently present 
throughout the computation, producing events only during their 
actual lifetime. Creating a new process would then correspond to 
sending an activation message to a process already kept in reserve 
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Fig. 1. A time diagram of a distributed computation 

internal events. A send event reflects the fact that a message 
was sent; a recewe event denotes the receipt of a message 
together with the local state change according to the 
contents of that message. A send event and a receive event 
are said to correspond if the same message that was sent in 
the send event is received in the receive event. We assume 
that a send event and its corresponding receive event occur 
in different processes. Internal evems affect only the local 
process state. Events are assumed to be atomic. Thus, we 
do not have to bother with events that are simultaneous in 
real time, and an event can safely be modelled as having 
a zero duration. 

It  should be noted that our model does not explicitly 
deal with conflicts, as is common practice in Petri net 
theory or related concurrency theories [51, 56, 73]. This 
does, however, not imply that the local algorithms are 
required to work deterministically, i.e., that the possibility 
of conflicts is excluded. Our discussion merely refers t o  
computations which have actually occurred li.e., s0-calied 
single runs or executions); we do not discuss methods ~br 
the specification of possible runs Thus, our model of com- 
putation does not preclude constructs such as CSP-like 
guarded commands, or nondeterministic message select, 
statements in the underlying programming or specification 
language. 

A convenient way to visualize distributed computa- 
tions are time diagrams. Figure 1 shows an example for 
a computat ion comprising three processes, where the pro- 
gress of each process is symbolized by a directed line. 
Global time is assumed to move from left to right, and 
global time instances correspond to vertical lines in the 
time diagram. Events are symbolized by dots on the pro- 
cess lines, according to their relative order of occurrence. 
Messages are depicted as arrows connecting send events 
with their corresponding receive events. 

By examining time diagrams like Fig. 1, it becomes 
obvious that an event e may causally affect another event e' 
if and only if there is a directed !eft-to-right path in the 
time diagram starting at e and ending at e'. Thus, event 
et l  may affect events e~2, e13, and e14 which are local 
relative to el 1, and also non-local events such as ez 1 or e23. 
On the other hand, event e12 can neither influence event 
e ~  occurring earlier on the same process line, nor can it 
affect non-local events like e3~ or e33. We can formalize 
this observation by defining the causality relation as 
follows: 

Definition 1.1. Given the standard enumeration of E~, the 
causality relation ~ ~_ E x E is the smallest transitive rela- 
tion satisfying: 
(1) If ei~, eik ~ Ef occur m the same process Pi, and j < k. 
t hen  e U ---> e~k. 
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(2) If s s E~ is a send event and r s Ej is the corresponding 
receive event, then s ~ r. 

Note that -~ is irreflexive, asymmetric, and transitive; i.e., 
it is a strict partial order. By definition, the causality 
relation extends the partial order defined by the standard 
enumeration of E l , E 2 , . . . ,  and EN. Informally, our rea- 
soning about the causal relationship between events can be 
stated in terms of the causality relation as follows: An 
event e may causally affect another event e' if and only if 
e-~ e'. 

The causality relation ~ of Definition 1.1 is actually 
identical to the "happened before" relation defined by 
Lamport  in [36]. We prefer to use the term "causality" 
rather than "happened before" because the relation de- 
fined in Definition 1.1 is causal rather than temporal. For  
example, event e33 in Fig. 1 occurs at a later real-time 
instant than event e11, although they are not causally 
related. 

If, for two events e and e', neither e ~ e', nor e ' ~  e 
holds, then neither of them causally affects the other. As 
we assume that there is no global real-time clock avail- 
able, there is no way to decide which of the events e and 
e ~ took place first "in reality" - we do not know their 
absolute order. This motivates the following definition of 
concurrency: 

Definition 1.2. The concurrency relation ]1 -~ E x E is de- 
fined as e I[ e' iff -7 (e --, e') and --1 (e' ~ e). 

If e IIe' holds, e and e' are said to be concurrent. 

Observation 1.3. The concurrency relation is not transitive. 

For  example, in Fig. 1 elzHe31 and e31 Ilez2 hold, but 
obviously e12 and e22 are not concurrent. 

1.2 The significance of the causality relation 

Causality is fundamental to many problems occurring in 
distributed computing. For  example, determining a consis- 
tent 91obaI snapshot of a distributed computation 
[10, 24, 45] essentially requires to find a set of local snap- 
shots such that the causal relation between all events that 
are included in the snapshots is respected in the following 
sense: if e' is contained in the global snapshot formed by 
the union of the local snapshots, and e ~ e' holds, then 
e has to be included in the global snapshot, too. That is, 
consistent snapshots are subsets of E that are left-closed 
with respect to the causality relation --*. Thus, the notion 
of consistency in distributed systems is basically an issue of 
correctly reflecting causality. 

Causal consistency has many important applications. 
For  example, determining consistent recovery points is 
a well-known problem in the field of distributed database 
management. For  determining deadlocks or detecting the 
termination of a distributed computation [43], the global 
view of the computation state must also be causally consis- 
tent in order to prevent so-called phantom deadlocks and 
false termination states. In distributed debugging, detect- 
ing global predicates is a key issue, and the causality 
relation is of utmost importance [15, 27, 30, 41]. Again, 

the problem is to obtain a consistent view in order to 
correctly evaluate the global predicate. Analyzing the 
causal relationship between events is also helpful for the 
detection of race conditions and other synchronization 
errors - one of the most difficult problems in distributed 
programming. Another issue is the proper replay of con- 
current activities in distributed systems for the purpose of 
debugging and monitoring. Here, the causal relation deter- 
mines the sequence in which events must be processed so 
that cause and effect appear in the correct order. When 
replaying trace data, the amount of stored information can 
significantly be reduced by appropriately representing the 
causal structure of the computation [50]. 

Causality plays also an important role in the exploita- 
tion of maximum parallelism, i.e., for distributed applica- 
tions which are required to run "as asynchronous as 
possible". An analysis of the causality retation can there- 
fore serve as an abstract concurrency measure of an algo- 
rithm [11, 20]. Note that all events which are not causally 
related can be executed in parallel - at least in principle. 
Hence, a careful study of causality could yield the "optimal 
parallelization" of a given set of events, and comparing this 
with a sequential ordering may lead to a formal definition 
of the "inherent degree of parallelism" of the underlying 
computation. 

In distributed protocols, the relaxation of unnecessary 
synchronization constraints may permit a higher degree of 
concurrency; a minimum requirement for synchronization 
is that the causal order of events is respected. Communica- 
tion protocols for point-to-point or multicast communica- 
tions which enforce only a causal delivery order (instead of 
insisting on synchronous delivery) are based on this idea 
[6, 64]. Here, different communication activities can pro- 
ceed in parallel, only the delivery of messages has to be 
delayed according to causality constraints. For  multicast 
operations, this technique was successfully employed in 
the ISIS system [6, 8]. Causally ordered broadcast proto- 
cols are useful, for example, for the realization of fault 
tolerant systems [7]. A similar idea is used in the imple- 
mentation of"causal shared memory" [2, 31], a weak form 
of shared virtual memory. 

In the theory of distributed computing, causality has 
also been used for reasoning about the properties of asyn- 
chronous systems. In [53], for example, it is argued that in 
many cases causality can serve as a more appropriate 
substitute for the traditional notion of real-time, and that 
reasoning based on the causal rather than on the temporal 
structure of a system is the correct level of abstraction in 
a distributed setting. This view, which has been advocated 
since a long time by the theory of Petri nets [59], is now 
also shared by most researchers working on distributed 
operating systems as a recent debate among experts shows 
[62]. 

2 Causal history and vector time 

In this section, we aim at a practical method to determine 
the causal relationship between events. We start with an 
easy-to-understand, but rather impracticable approach by 
assigning a complete causal history to each event, and we 
show that these histories accurately characterize causality. 
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Some refinements of the basic scheme will finally lead to 
a more  practical concept  generally known as vector time. 

2.1 Causal histories 

In principle, we can determine causal relationships by 
assigning to each event e its causal history C(e), where C(e) 
is a set of events defined as follows: 

D e f i n i t i o n  2.1. Le t  E = E~ u . - '  w EN denote the set of 
events of a distributed computat ion,  and let e ~ E denote 
an event occurring in the course of that  computat ion.  The 
causal history of e, denoted C(e), is defined as 
C(e) = {e' e El(e'--, e)} u {e}. 

The projection of C(e) on E~, denoted C(e)[i], is defined 
by C(e)[i] = C(e) ~ E~. 

A causal history is a prefix-closed set of events under the 
causal ordering. C(e) contains all events which causally 
precede e, i.e., which might have affected e. Note  that  e' 
causally precedes e if and only if there is a directed path in 
the time diagram from e' to e. Thus, C(e) essentially con- 
tains those events that  can reach e along a directed path. 
For  example, event e23 in Fig. 1 is reachable by e ~ ,  e~2, 
e~3, e21, and e22; hence, C(e23)= { e ~ ,  e~2, e13, e2~, ez2, 
e23 }. A discussion of further interesting properties of 
causal histories may  be found in [51, 57, 73]. 

Lemma 2.2. Let e, e' ~ E, e #: e'. Causality and causal his- 
tory are related as follows: 
(1) e ~  e' iff e eC(e ' ) .  
(2) e [ l e ' / f l e e  C(e') /x e'$ C(e). 

Proof  This follows directly from the definition of 
C(e). [] 

Lemma 2.2 states that the causal histories C(e) and 
C(e') suffice to determine causality or  concurrency of two 
events e and e'. Furthermore,  there is a straightforward 
algori thm that  assigns C(e) to every event e of a distributed 
computat ion:  

(1) Let El = {ell, ei2 . . . .  , elk} denote the local events of Pi 
in s tandard enumeration,  and define d u m m y  events e~o for 
i = 1 , . . . ,  N such that  C(e~o) -- fg .  
(2) If e,j e E~ is an internal event or a send event, and 
e~ d_ ~ e E~ is its local predecessor, then compute  C(e~j) as 
follows: C(eifl = C(eid- 1) w {eli}. 

Informally, e~j simply inherits the causal history of its 
immediate predecessor. 
(3) If  e/j e E~ is a receive event, s its corresponding send 
event, and e~,j_ ~ ~ E~ is the local predecessor of e~, then 
compute  C(eij) as follows: C(eifl = C(ei,j- ~ ) w C(s) w { eij }. 

Informally, e~ inherits the causal history of both  of its 
immediate predecessors. 

2.2 Vector time 

The scheme described above allows to determine causal 
histories on-the-fly during a distributed computa t ion  by 
maintaining sets of  events at the processes and by 
piggybacking C(s) on the outgoing message for each send 
event s. However,  the algori thm is only of  theoretical 
interest, because the size of the causal history sets is of the 
order of the total number  of events that  occur during the 

computat ion.  Fortunately,  the basic scheme can be im- 
proved substantially based on the following observation: 

O b s e r v a t i o n  2.3. Recall that C(e) = C(e) [1]w " 
C(e)[N]. ! f  Ek = {ekl . . . .  ,ekm} is given in standard enu- 
meration, then ekj E C(e)[k] implies that ekl, . . , ek,j-1 

C(e)[k]. Therefore, for each k the set C(e)[k] is suffi- 
ciently characterized by the largest index among its 
members, i.e., its cardinalitv. Thus, C(e) can be uniquely 
represented by an N-dimensional vector V{e) of  cardinal 
numbers, where V(e) [kl = J C(e)[k][ holds for the k-th com- 
ponent (k = 1 . . . . .  N)  of  vector V(eJ. 2 

As an example, the causal history of event e23 in Fig. 1 can 
be represented by V(e23) = [3, 3, 01 because the cardinal- 
ity of C(e23)[1], C(e23)[2], and C(e23)[3] is 3, 3, and 0, 
respectively. Figure 2 depicts a distributed computat ion,  
with the associated vectors assigned to each event. 

The use of vectors can be generalized in a straight- 
forward way to represent an arbitrary prefix-closed event 
set X _ E, again by taking the locally largest event index: 
V ( X ) [ k l  = IX ~Ek[. For  notat ional  convenience, let the 
supremum s u p { v l , . . - , V m }  of a set { v l , . . . , v m }  of n- 
dimensional vectors denote the vector v defined as 
v i i i  = m a x { v l [ i ]  . . . . .  v,~[i]} for i =  1 . . . .  n. The fol- 
lowing lemma is the key to an efficient implementanon of 
the above algorithm: 

Lemma 2.4. Let e, e' ~ E denote events, let C{e), C(e') 
denote their causal histories, and let V(e), V(e') denote the 
corresponding vector representations, respectively. The 
vector representation of  the union Clel w C(e') is 
V(C(e) ~ C(e')) = sup{ V(e), V(e')}. 

Proof  This follows immediately from the definition of  
C(e), V(e), and Observat ion 2.3. ,~ 

Applying Lemma 2.4, and translating the set operat ions on 
causal histories to the corresponding operations on vec- 
tors yields an improved versmn of our  above-ment ioned 
algori thm which maintains vectors instead of sets. In  fact, 
the resulting algorithm is essentially the same as the one 
given in [171 or in [441. There, the vectors defined as in 
Observat ion 2.3 are called time vectors, and the general 
concept is called vector time. 3 We state the operational  
definition from [44] here: 

D e f i n i t i o n  2.5. Let P t  . . . . .  PN denote the processes of 
a distributed computat ion.  The vector time ~ of process P~ 
is maintained according to the following rules: 
(1) Initially, V~[k]:= 0 for k = t . . . . .  N. 

2 If the number of processes N is not fixed, then V(e) can be repres- 
ented by the set of all those pairs (k, I C(e) [k] 1) for which the second 
component is different from 0 
3 Actually, the concept of vector time cannot be attributed to a single 
person. Several authors "re-invented', time vectors for their purposes, 
with different motivation, and often without knowing of each other. 
To the best of our knowledge, the first applications of "dependency 
tracking" vectors [70] appeared in the early 80"s in the field of 
distributed database management [21, 74]: In [17] and E44], how- 
ever, vector time is introduced as a generalization of Lamport's 
logical time, and its mathematical structure and its general properties 
are analyzed 
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Fig. 2. Events with their associated vector timestamps 

(2) On each internal event e, process P~ increments V/as 
follows: V/[i]:= V/[i] + 1. 
(3) On sending message m, P, updates V~ as in (2), and 
attaches the new vector to m. 
(4) On receiving a message m with attached vector time 
V(m), P~ increments Vii as in (2). Next, P~ updates its current 
Vii as follows: V/:= sup{V/, V(m)}. 
Let V(e) denote the vector time Vii which results from the 
occurrence of event e in process P~. V(e) is said to be the 
vector timestamp of event e. Accordingly, V(m) denotes the 
vector timestamp attached to message m. 

It should be clear that the rules of Definition 2.5 specify 
a simplified version of the above-mentioned algorithm for 
the computation of the causal history C(e) of an event e. 
Instead of C(e), the associated vector V(e) is determined 
according to Observation 2.3. Obviously, this version of 
the algorithm can be realized more efficiently than the 
original scheme that manipulates sets of events. The 
application of Definition 2.5 is demonstrated in 
Fig. 2 which illustrates that timestamps of messages 
propagate the knowledge about vector time (and thus 
about causally preceding events) along the directed paths 
of a time diagram. Since a simple one-to-one correspond- 
ence between vector time V(e) and causal history C(e) 
exists for all e e E, we can determine causal relationships 
solely by analyzing the vector timestamps of the events in 
question. 

We conclude our discussion of vector time with 
a "knowledge-based" interpretation. Informally, the com- 
ponent V/[i] of P~'s current vector time reflects the accu- 
rate logical time at Pi (measured in "number of past 
events" at Pi), while Vii [k] is the best estimate P~ was able 
to derive about Pk'S current logical clock value Vk[k]. 
Thus, if V(e) is the vector timestamp of an event occurring 
in Pi, then V(e)[k] is the number of events in Pk which 
e "knows about", where "x knows about y" is synonymous 
to <'y is in the causal history of x ' .  

Postulating an idealized global observer who is instan- 
taneously informed about the occurrence of all events 
yields another interesting interpretation of vector time. 
This "omniscient" observer could maintain a vector clock 
a2 defined as f2[i]  = V/[i] (for i = 1 . . . .  , N), thus having 
perfect knowledge of all past events at any time. Clearly, 
P[s "current knowledge" about each process (represented 
by Vii) is only a subset of the omniscient observer's know- 
ledge since s = sup{V1 . . . .  , VN}. However, it should also 
be evident that at any time Vii represents the best possible 
"approximation" of global knowledge that P~ is able to 
obtain within the system. 
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3 Causality and time 

Having introduced the concept of vector time, we now 
study its relation to causality and real time. 

3.1 Characterizing causality with vector Hme 

Vector time has several interesting properties, for example, 
its mathematical structure is similar to Minkowski's rela- 
tivistic space-time [491 in the sense that causal histories 
correspond to light cones [44]. Most interestingly, how- 
ever, the structure of vector time is isomorphic to the 
causality structure of the underlying distributed computa- 
tion. In this section, we prove this fact by rephrasing 
Lemma 2.2 in terms of time vectors. 

Definition 3.1. Let E denote the set of events of a distrib- 
uted computation, and let (S, < ) denote an arbitrary 
partially ordered set. Let ~b:E-+ S denote a mapping. 
(1) (4b, < ) is said to be consistent with causality, if for all e, 
e' e E: q$ (e) < q$ (e') if e -~ e' . 
(2) (q$, < ) is said to characterize causality, if for all e, 
e' ~ E: 4 (e )  < 4J(e') i f f  e --> e' . 

For a given ~b which satisfies (t) or (2) we say for short that 
(S, < ) is consistent with or characterizes causality. 

Note that a partial order (E, < ) on the set E of events 
which is consistent with causality represents an extension 
of (E, --* ) (in particular, a linear extension if < is a total 
order), and that any partial order (S, < ) which character- 
izes causality represents an isomorphic embedding of 
(E,-+). 

Let V =  { V ( e ) l e e E  } denote the set of vector time 
values assigned to the events of a distributed computation 
according to Definition 2.5. We aim at a computationally 
simple relation < defined on time vectors, such that 
(V, < ) characterizes causality. 

Definition 3.2. Let u, v denote time vectors of dimension m. 
(1) u_-<vif fu[k]<=v[k]  f o r k =  1 , . . . ,  m. 
(2) u < v i f f u < v a n d u + v .  
(3) u l[ v iff -n (u < v) and --7 (v < u). 

We will now show that (V, < )  in fact characterizes 
causality: 

Theorem 3.3. For two events e and e' of a distributed 
computation, we have 
(1) e ~ e ' / f f  V(e) < V(e'). 
(2) e ][ e ' / f f  V(e)l] V(e'). 

Proof. (1) Suppose that e ~ e' holds. According to Lemma 
2.2, e e C(e'); from Definition 2.1 and the fact that -~ is 
transitive, it follows that causal histories are left-closed 
with respect to ~ ,  hence we conclude that C(e) c_ C(e'). 
Thus, C(e)[kl~_C(e')[k], and therefore V(e)[k]= 
IC(e)[k][ < [C(e')[kl[ = r(e')[k] for k = 1 . . . .  , g .  That 
is, V(e)<= V(e'). Because~ i s  a strict partial order, 
e'r Thus, C(e) cC(e ' ) ,  and it follows that 
V(e) 4: V(e'). 
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Conversely, suppose V(e)< V(e'). From Observation 
2.3, we learn that C(e)[k] ~_ C(e')[k] for k = 1 , . . .  , N, i.e., 
C(e) ~_ C(e'). From V(e) 4: V(e') it follows that e + e': But 
e E C(e) c_ C(e'), and therefore e--, e' must hold according 
to the definition of C(e'). 

Property (2) follows immediately from (1) and the def- 
inition of concurrency. [] 

Theorem 3.3 offers a convenient method to determine the 
causal relationship between events based on their vector 
times. In fact, instead of comparing whole time vectors, the 
necessary computations can often be reduced even further, 
according to the following lemma. A proof is straight- 
forward and may be found, for example, in [27~. 

Lemma 3.4. For two events e ~ E~ and e~ ~ E~, e ~ g, we 
have 
(1) e ~ e ' / f f  V(e)[i] < V(e')[i]. 
(2) e[I e' iff V(e)[i] > V(e')[i] and V(e ' )[ j]  �9 V(e)[j]. 

Lemma 3.4 states that we can restrict the comparison to 
just two vector components in order to determine the 
precise causal relationship between two events if their 
origins P~ and Pj are known. The intuitive meaning of the 
lemma is easy to understand. If the "knowledge" of event e' 
in Pj about the number of local events in Pi (i.e., V(e')[ i ]) is 
at least as accurate as the corresponding "knowledge" 
V(e)[i] of e in Pi, then there must exist a chain of events 
which propagated this knowledge from e at P~ to e' at Pj, 
hence e ~ e' must hold. If, on the other hand, event e' is not 
aware of as many events in P~ as is event e, and e is not 
aware of as many events in Pj as is e', then both events have 
no knowledge about each other, and thus they are concur- 
rent. Clearly, the converse arguments are equally valid for 
both cases. 

3.2 Real time and Lamport time 

The analysis of causality is closely related to temporal 
reasoning. As everyday experience tells us, every cause 
must precede its effect. Names such as "happened before" 
[361 and "is concurrent with" for relations which are 
causal rather than temporal reflect this fact. However, such 
a terminology - although quite suggestive - is somewhat 
misleading. In this section, we briefly discuss the relation- 
ship between time and causality. 

Let t(e) denote the real-time instant at which event e of 
a given computation takes place. Obviously, idealized real 
time (t, < ) is consistent with causality; it does not, how- 
ever, characterize causality, because t(e) < t(e') does not 
necessarily imply e ~ e'. An addit ional  problem is that 
a set of synchronized local real time clocks, i.e. a proper 
realization of an idealized "wall clock", is generally not 
available in distributed systems. Fortunately, it is possible 
to realize a system of logical clocks which guarantees that 
the timestamps derived are still consistent with causality. 
This was shown by Lamport  in [36]. 

Definition 3.5. The Lamport time is a mapping L:E---, N 
which maps events to integers, defined recursively as 
follows: 
(1) If e is an internal event or a send event, and e has no 
local predecessor, then L(e) = 1; if e has a (unique) local 
predecessor e', then L(e) = L(e') + 1. 

[i] ~4] i5J [71 
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Fig. 3. Events with their associated Lamport timestamps 

(2) If r is a receive event and s is the corresponding send 
event, and r has no local predecessor, then L(r) = L(s) + 1; 
if r has a (unique) local predecessor e', then L ( r ) =  
max{L(s), L(e')} + 1. 

Figure 3 shows a distributed computation with Lamport  
timestamps assigned to the events. Lampor t  time can be 
implemented easily with a scheme similar to the one of 
Definition 2.5, but with simple integers instead of vectors 
[36]. One can easily see that by construction, Lampor t  
time (L, < ) is consistent with causality. However, as Fig. 3 
shows, it does not characterize causality: L(e11)< L(e22) 
although el l  and ezz are causally independent. Hence, 
although Lampor t  time implies a natural partial order on 
the set of events (by defining that an event e precedes an 
event e' iff L(e) < L(e')), this order is different from --+. We 
can, however, easily define a linear extension of this im- 
plied order, for instance by the following definition. 

Definition 3.6. Let e ~ El, e' e E~, and let L(e), L(e') denote 
their Lamport  timestamps. The total event order 
_~ E x E is defined by 

(1) If L(e) < L(e'), then e ~ e'. 
(2) If L(et =- L(e') and i < j holds, then e ~ e'. 

Clearly, IL. ~ )  is consistent with causality (i.e.. ~ __ ~ ). 
Hence, if we order all events by o ,  then an event will not 
occur prior to any other event that might have caused it. 
Therefore, this ordering can be regarded as an acceptable 
reconstruction of the linear sequence of atomic actions 
that actually took place during the distributed computa- 
tion. However, if two events e and e' are concurrent, then 

determines just one of several possible, causally consis- 
tent interleavings of the local event sequences. Note  that 
even if tie) < t(e') actually holds for two concurrent events 
e and e' - which is, of course, not known within the system 

L(e) > L(e') is still possible, as the events e32 and e~t in 
Fig. 3 demonstrate. Interestingly, this is not possible for 
vector time. If Vie) < V(e') holds, then we necessarily have 
tie) < t(e'), whereas nothing about the real-time order can 
be derived from Lie) < L(e'L 

To summarize our discussion, we remark that 
Lampor t  time induces an interleaving of the local event 
streams which is consistent with causality. Thus. although 
not necessarily consistent with real time, Lampor t  time 
may serve as an adequate substitute for real time with 
respect to causality. However, both real time and Lampor t  
time are insufficient to characterize causality and can 
therefore not be used in general to prove that events are 
not causally related. This. however, is quite important  for 
the analysis of distributed computations. Stronger con- 
cepts like vector time are required for that purpose. 



4 Efficient realizations of vector time 

In the previous section we saw that vector time character- 
izes causality. Furthermore, provided that the vector 
timestamps of all events are available, Lemma 3.4 offers 
a convenient method to compute the relations ~ and II. 
The major drawback of vector time is the size of the time 
vectors. This might pose problems for massively parallel 
computations. In this section, we present some techniques 
for an efficient realization of vector time in distributed 
computations. 

4.1 Compressing message timestamps 

According to Definition 2.5, all messages of a distributed 
computation have to be tagged with a timestamp of size 
N to maintain vector time. If N, the number of processes, is 
large, the amount of timestamp data that has to be at- 
tached to each message seems unacceptable. Two observa- 
tions may lead to a substantial improvement of the basic 
technique to maintain vector time: 

Observation 4.1. In a distributed computation, we typically 
observe the following: 
(1) Even if the number N of processes is large, only few of 
them are likely to interact frequently by direct message 
exchange. 
(2) I f  we compare an event e with its local successor e', only 
few entries of the time vector V(e') are likely to differ from 
those of V(e). 

The first observation motivates the second, since, if two 
processes never directly or indirectly interact, they will 
never receive new knowledge about each other's causal 
histories, and hence the corresponding vector entries re- 
main unchanged. 

Based on Observation 4.1, Singhal and Kshemkalyani 
[65] propose an improved implementation technique for 
vector clocks which typically saves communication band- 
width at the cost of slightly increased storage require- 
ments. Their idea is to append only those entries of the 
local time vector Vii to a message sent to Pj which have 
changed since the last transmission to P~. For  this purpose, 
each process P~ maintains two additional vectors LS~ ("last 
sent") and LUI ("last update"). LSi[j] is set to the "local 
time" Viii] when P~ sends a message to Pj. LUg[j] is set to 
Vi[i] when Pi updates entry Vii i ] ,  which (for i #:j)  can 
only appear on receipt of a message. Instead of timestamp- 
ing each message with V(m) = Vii when sending a message 
to Pi (see Definition 2.5), process P, behaves as follows after 
incrementing Viii] and setting LU,.[i] to Viii]: 
(1) For  k = 1 , . . . , N ,  if LUg[k-1 > LSi[j] then a pair 
(k, V~[k]) is added to an (initially empty) set S(m). 
(2) The message m is sent together with S(m) to its destina- 
tion P;, and LSi[j]:= V/[i]. 

According to rule (1) above, S(m) contains exactly 
those entries of V~ which have been updated since their last 
transmission to Pj - the only entries which may cause 
a change of Py's local vector Vj. Thus, it is obviously 
sufficient to just send S(m) instead of V(m) in order to 
maintain the local time vector. Note, however, that F IFO 
channels are required; otherwise, the information in S(m) 
might be insufficient for a proper update of the receiver's 
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Fig. 4. Singhal's and Kshemkalyani's method to maintain vector 
time 
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Fig. 5. Loss of information about the causal relationship between 
messages 

time vector. Figure 4 shows an example of how the tech- 
nique works. 

For  large systems, the proposed method can result in 
substantial savings in communication bandwidth. How- 
ever, it suffers from a slight deficiency, as mentioned by 
Meldal et al. in [47]. By compressing the message time- 
stamps, we lose immediate access to some information 
about the causal relationship between different messages 
sent to the same receiver. In particular, it is no longer 
possible to decide whether two such messages (or, more 
precisely, their corresponding send events) are causally 
dependent solely by comparing their (compressed) time- 
stamps. This is illustrated in Fig. 5. In both scenarios 
shown, P3 receives messages mi and m2 at times 
V(rl) = [1, 0, l l  and V(r2) = [2, 3, 4], respectively; the 
compressed message timestamps are S(ml) = {(1, 1)} and 
S(m2) = {(2, 3)}. However, in the first scenario ml and m2 
are causally unrelated, while in the second m2 causally 
depends on m~ because the send event of ml causally 
precedes the send event of m2. From Pa's point of view, the 
two different scenarios are indistinguishable. Note that if 
messages were equipped with the full vector timestamps, 
then the receiver P3 would know whether m~ and m2 are 
causally unrelated ([1, 0, 0] U [0, 3, 0] in the first scenario) 
or not ([1, 0, 01 < [2, 3, 0] in the second scenario). In par- 
ticular, P3 would then be able to determine that it received 
mx "out of causal order" if in the second scenario ml is 
delayed such that it arrives after m2. 
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With compressed timestamps, this is impossible if only 
compressed message timestamps are taken into account. 
In principle, however, no information is actually lost 
because the compression scheme only suppresses those 
parts of a message's timestamp which are already known 
to the receiver. That is, each process may recover the 
original, uncompressed timestamps, but this would require 
the collection of some additional information about the 
local vector time at which the compressed time- 
stamps were received, and about the components of the 
local time vector which were last updated. Thus, in 
applications like, e.g., causally ordered message delivery 
protocols [8, 14,64] where such detailed knowledge is 
required, some additional book-keeping and computa- 
tional effort is needed to locally restore the suppressed 
information. An approach to recover the full timestamp of 
each message requiring O(N 2) space at each process may 
be found in [65]. 

4.2 Reconstructing time vectors 

In the previous section, it was shown how message time- 
stamps can be efficiently coded so as to save communica- 
tion bandwidth in typical cases. The technique is especially 
valuable if the number N of processes is large, The main 
disadvantage, however, is that the size of the message 
timestamps is still linear in N in the worst case; also, three 
vectors per process are needed instead of just one as in the 
basic approach. In this section, we try to further reduce the 
amount of data that has to be attached to each message in 
order to maintain vector time. However, this comes at the 
cost of an increased computational overhead for the calcu- 
lation of the time vectors assigned to events. In most cases, 
this overhead is probably too large for an on-line compu- 
tation because this would slow down the distributed com- 
putation in an unacceptable way. The methods described 
here might be used, however, for a trace-based off-line 
analysis of the causality relation. 

Recall that the vector timestamp is just a compact 
notation for the causal history of an event. That is, in 
principle we can determine the vector timestamp of an 
event e by simply computing the set of all events in the 
time diagram that can reach e via a directed path. Note 
that a time diagram is basically a directed acyclic graph; 
for example, Fig. 6 shows the graph resulting from the time 
diagram depicted in Fig. 4. There are several well-known 
algorithms which compute reachable vertices in directed 
graphs. However, these algorithms do not efficiently 
exploit the peculiar structure of time diagrams, in par- 
ticular: 

- In a directed acyclic graph derived from a time diagram, 
each vertex (i.e., each event) has at most two direct 
predecessors. 
- Vertices denoting events occurring in the same process 
are totally ordered and thus form a directed path in the 
graph. That is, a graph that represents a distributed com- 
putation comprising N processes contains N local 
"chains,'. 

As a result, the general algorithms are too inefficient; the 
Floyd-Warshall algorithm, for example, requires O(K 3) 
steps to determine the reachability matrix for a directed, 

el l  el2 e13 el4 el5 

e21 e22 e23 
/ ~_o/ 

Fig. 6. Directed graph corresponding :o the time diagram of Fig. 4 

acyclic graph containing K vernces [23,72]. For  the 
special case of time diagrams, more efficient solutions are 
feasible. 

Figure 7 shows a simple recursive graph searching 
algorithm which determines the vector time V(e) of an 
event e ~ E. Basically, the algorithm determines V(e) by 
applying a recursive "backward search" on the directed 
graph, and by counting the events belonging to C(e). Since 
GraphSearch is called exactly once for each event in C(e), 
the complexity for determining the vector timestamp of 
a single event is linear in the number of events. 

It should be noted that the algorithm is suited for an 
off-line computation of time vectors and causal histories 
where the graph corresponding to the time diagram is 
available in the sense that each event can provide a pointer 
to its non-local predecessor. Reconstructing time vectors 
and causal histories after the distributed computation 
might be computationally expensive but it avoids the 
sending of vector timestamps in messages and the keeping 
of local time vectors during the execution of the applica- 
tion. It clearly depends on the application whether such an 
approach is suitable or not. 

The algorithm depicted in Fig. 7 is linear in the "dura- 
tion" of the distributed computation, because E increases 
as the computation proceeds. Hence. it may take rather 
long to reconstruct the time vectors of "late" events. Fortu- 
nately, the graph of a distributed computation consists of 
N totally ordered chains of events. Therefore, it suffices to 
know the most recent predecessor of event e with respect to 
each chain in order to determine C(e); indexing all events 
in standard enumeration will yield the prefix of each chain, 
To exploit this fact, it is required that a process keeps track 
of the most recent event in each process which directly 
influenced it. As an example, in Fig. 6 the events of each 
process which directly affected P~ mos~ recently with re- 
spect to event e~5 (namely, el~, ca3 and e32) are depicted as 
white dots. By maintaining at runtime a vector D, such 
that D(e)[k] denotes the index of the event in Pk which 
most recently (with respect to et sent a message to e's 
process, we can derive V(e) with even less effort than is 
required by the algorithm depicted in Fig. 7. 

The approach described here is due to Fowler and 
Zwaenepoel [24]. Basically. their "time vectors" only 
reflect direct dependencies, white vector time takes into 
account also transitive dependencies. By ignoring indirect 
causal relationships, it suffices to attach only a single event 
index (i.e., a scalar instead of a vector) to each message that 
is transmitted. As a disadvantage, transitive causal de- 
pendencies must be re-computed for each event. More 
specifically, each process P~ maintains a dependency veaor 
D~ as follows: 

(1) Initially, D~[jl := 0 for all j - t . . . . .  N. 



TimeVector (e: Event) 

/* Computes the vector time V(e) for event e*/ 

Assign 0 to all components of V(e); 

GraphSearch(e); 

return V(e); 
end TimeVector; 
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GraphSearch (z: Event 

Mark z as visited; 

Determine i such that z6 Ei; 

V(e) [i] :: V(e) [i] + i; 

if z has an unmarked direct local predecessor x6 E i, 

then GraphSearch(x) endif; 

if z has an unmarked direct non-local predecessor ye Ej, i~ j, 

then GraphSearch(y) endif; 

Fig. 7. Simple algorithm ~rthereconstruction of V(e) 
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Fig. 8. Maintaining direct dependency vectors 

(2) On each event occurrence in P~, Di is incremented: 
D~[i]:= Dg[i] + 1. 
(3) On sending a message m, Pi attaches (the incremented) 
value O(m) = Oi[i] to m. 
(4) On receiving message m sent by Pj with attached value 
D(m), Pi updates Di: Di[j] := max{Di[j] ,  D(m)}. 

Let D(e) denote the dependency vector associated with an 
event e, and more particularly, let Di(k) denote the depend- 
ency vector Di which results from the occurrence of the 
k-th event in process Pi. As with Vi[i], Dill] serves as an 
event counter for the local events in P~, i.e., Di(k)[i] = k. 
For i +j, Di(k)[j] denotes the sequence number of the 
most recent event in Pj (actually, a send event) that directly 
influenced the k-th event in P;. Figure 8 depicts the distrib- 
uted computation of Fig. 4 with the resulting dependency 
vectors. If we compare Fig. 4 with Fig. 8, we observe that 
D(e) < V(e) for all e, which is obviously true in general. 

In order to determine the transitive causal depend- 
encies necessary for the full time vectors, V(e) is derived 
from D(e) by recursively retracing the direct dependencies, 
i.e., by computing the transitive left-closure of the direct 
dependence relation. In [24], Fowler and Zwaenepoel 
present a simple procedure which transforms D(e) into the 
corresponding V(e). Their method is very similar to the 
simple graph searching algorithm presented in Fig. 7; the 
main difference is that the events on which an event e dir- 
ectly depends are not retraced, but can be addressed 
immediately via their index stored in D (e). Figure 9 depicts 
the graph of Fig. 6 with the dependency vectors attached 
to each event; obviously, the entries of the vectors serve as 
pointers to the most recent events which potentially had 
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Fig. 9. Dependency vectors as pointer arrays 

influence on the process. By performing a depth-first walk 
along each dependence path, using the indices of Di as 
pointers to the next relevant predecessor events, Fowler's 
and Zwaenepoel's method reconstructs the left-closure of 
the direct dependence relation in at most O(M) steps, 
where M denotes the total number of messages sent during 
the computation. The details of their algorithm and a de- 
rivation of its complexity bound may be found in [24]. 

Recently, Baldy et al. [4] proposed an improved vari- 
ant. Basically, their idea is to apply breadth-first retracing 
to all dependence paths in parallel instead of following 
each single path in a depth-first manner as was proposed 
by Fowler and Zwaenepoel. Figure 10 shows the resulting 
algorithm. A formal proof of its correctness may be found 
in [4]; here, we merely present an informal correctness 
argument. 

Initially, the algorithm starts with D(e) as a first ap- 
proximation of V(e). Consider the first iteration of the 
algorithm's outer loop. What the algorithm actually does 
is to visit all direct causal predecessors of event e. These 
predecessors are directly accessed in the inner loop by 
interpreting the components of D(e) as pointers, as shown 
in Fig. 9. The components provided by those predecessors' 
dependency vectors - i.e., pointers to their respective pre- 
decessor events - are taken into account by considering 
sup {D(x) lx is pointed at by a component of D(e)} and by 
updating the approximation V(e) accordingly. As noted 
earlier, Di(k)[i] = k. Therefore, after one iteration of 
the outer loop, at least the indices of all immediate 
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VectorTime (e: Event) 

/* Computes V(e) for event e in a system of N processes */ 

V(e) := D(e); 

repeat /* outer loop: executed at most N times */ 

old V := V(e}; 

for k := 1 to N do /* inner loop: executed N times */ 

V(e) := sup(V(e), Dk(old_V[k]) ); /* N comparisons */ 

endfor 

until old_V = V(e) endrepeat; 

return V(e) 

end VectorTime; 

Fig. 10. Algorithm for the conversion of D(e) to V(e) according to Baldy et al 

predecessors have been incorporated into Vlel, and Vie) 
contains pointers to the predecessors of e at indirection 
level 1. By a simple, inductive argument it is easy to see 
that after the l-th iteration of the outer loop at least all 
predecessor events of e at indirection level l - t have been 
determined, and that V(e) contains pointers to those prede- 
cessors at indirection level I. It remains to be shown that the 
outer loop terminates after a finite number of iterations. 

To see why this is in fact the case. recall that if we 
follow the dependence path of an event e e Ei back into the 
past starting at process Pi, we can stop the retracing as 
soon as we come back to some event e' e Ei again since 
the dependence paths do not contain cycles, e' is a local 
predecessor of e and the past of e' is already contained in 
the past of e. Therefore, as soon as the retracing of a de- 
pendence path returns to a process which has already been 
visited before during the inspection of that path, we can 
immediately stop its further retracing. As there are only 
N processes and every retracing step of the path must 
jump to a process that has not been visited yet. the set of 
processes not visited so far is exhausted after at most 
N steps. Therefore, the maximum number of steps to 
complete the inspection of a single dependence path is N. 
The algorithm depicted in Fig. 10 respects all N depend- 
ence paths originating at e in parallel; it therefore requires 
at most N iterations of its outer loop. Consequently, the 
number of execution steps required for the reconstruction 
of a single time vector is bounded by O(N 3) which com- 
pares favorably to the complexity derived for Fowler's and 
Zwaenepoel's original scheme. In fact, according to Baldy 
et al. an even more efficient algorithm is feasible which 
reconstructs V(e) in at most O(N 2) steps by combining 
vector timestamps and Lampor t  timestamps, but it re- 
quires a more involved and less intuitive derivation. Essen- 
tially the same scheme was independently developed by 
Masuzawa and Tokura. The interested reader is referred 
to [4, 42] for further details. 

Like Fowler's and Zwaenepoel's method, the O(N2I 
reconstruction algorithm requires random access to all 
local event streams. If events occur rarely, and a large 
amount  of data has to be recorded for each event anyway, 
then a reconstruction approach might be advantageous: 
a typical example is dependency tracking in distributed 
databases. On the other hand, if events occur verv fre- 
quently, then it might be impossible to record the complete 
event traces which are required for a reconstruction of all 

vector dmestamps, even in cases where state-sawng tech- 
niques such as those described in [46] are applicable. In 
such cases, vector time has to be maintained on-the-fly by 
the classical scheme described earlier. Typically, on-line 
monitors belong to this type of applications: there, com- 
plex reconstruction schemes are prohibitive anyway be- 
cause they are too time expensive. 

Finally, it should be noted that Fowler's and 
Zwaenepoel's original aim was to compute causal distrib- 
uted breakpoints rather than vector time. Informally, the 
causal distributed breakpoint corresponding to an event 
e is defined as the earliest consistent global state that 
contains e. That  is. in order to guarantee rninimality and 
consistency, the breakpoint reflects the occurrence of an 
event e' if and only if e' ~ C(e). Hence. causal distributed 
breakpoints and causal histories are equivalent. Since 
according to Observation 2.3 C(e) is isomorphic to V(e), 
this explains why Fowler's and Zwaenepoel's algorithm 
and the algorithm depicted in Fig. 10 actually compute 
vector time. 

4.3 About ~he size of  vector clocks 

Vector time is a powerful concept for the analysis of the 
causal structure of distributed computations. However. 
having to deal with timestamps of size N seems unsatisfac- 
tory even if we take into account the improvements 
suggested in the previous sections. The question remains 
whether it is really necessary to use time vectors of that 
size. Is there a way to find a "better" timestamping algo- 
rithm based on smaller time vectors which truly character- 
izes causality? 

As it seems, the answer is negative. Charron-Bost 
showed in [12] that causality can be characterized on!y by 
vector timestamps of size N. More precisely, she showed 
that the causal order (E, ~ ~ of a distributed computation 
of N processes has in general dimension N. This induces 
a lower bound on the size of time vectors because a partial 
order of dimension N can be embedded in the partially 
ordered set (IR k, < J of real-valued vectors only if k > No 
We summarize Charron-Bost 's  results: 

Definition 4.2. A partial order (X, < '  ~ is said to be isomor- 
phically embedded into a partial order ( Y. < I if there exists 
a mapping qS:X ~ Ysuch that for all x, y s X, ~b(x) < ~b(y) 
i f fx  < 'y .  



Note that according to Definition 3.1, (X, < ' )  character- 
izes causality iff (E, ~ ) can be isomorphically embedded 
into (X, <') .  

Definition 4.3. Let (X, < ) denote a partial order. A reali- 
zer of (X, < ) is a set of linear extensions of (X, < ) such 
that the intersection of all extensions is equal to (X, < ). 
The cardinality of a smallest realizer of (X, < ) is called the 
dimension of (X, < ), denoted dim(X, < ). 

We cite Ore's characterization of the dimension of a par- 
tial order from [123: 

Theorem 404. (Ore) A finite partially ordered set (X, <') 
can be isomorphically embedded into (IR k, < ) / f  and only if 
k > dim(X, <').  

The following theorem is the key result of [12]: 

Theorem 405. For every N there exist processes P1 . . . . .  PN 
forming a distributed computation, and a set E of events 
produced by that computation, such that dim(E, ~ ) = N. 

For a proof the reader is referred to [12]. What this 
theorem actually implies is that, if we represent logical 
time by integer-valued vectors and if we use the canonical 
vector order < of Definition 3.2 to compare these vectors, 
then we need vectors of size N to isomorphically embed 
the -+ relation, i.e., to characterize causality - no matter 
what scheme is applied to maintain the time vectors. 
However, it does not imply that vectors of dimension N 
are mandatory! In fact, we can uniquely map each 
vector on a (rather large) scalar value and vice versa. 
Typically, this will result in scalars which are at least as 
"clumsy" as vectors are. But still, it is not immediately 
evident that - for a more sophisticated type of vector order 
than < - a smaller vector could not suffice to characterize 
causality, although the result of Charron-Bost seems to 
indicate that this is rather unlikely. At least we have the 
following fact [12]: 

Corollary 4.6. Let T denote a set of an arbitrary kind of 
timestamps assigned to the events of arbitrary computations 
of N processes. Any partial order (T, < ') that characterizes 
causality must have a dimension dim(T, < ' )  > N. 

Proof. (By contradiction). According to Theorem 4.5, 
choose a distributed computation of N processes, such 
that dim(E, ~ ) = N. Suppose that dim(T, < ' )  = k < N. 
Theorem 4.4 states that there exists a mapping ~b: T ~  IRk 
which embeds (T, < ') into (IRk, < ). If (T, < ') character- 
izes causality, we have for all e, e' ~ E: 
(11 T(e) <'T(e') iff e --* e'. 
(2) O(T(e)) < ~(T(e')) iff T(e) < ' r ( e ' ) .  
Putting (11 and (2) together, we obtain ~(T(e)) < q~(T(e')) 
iff e ~ e'. Thus, (~b o T) is a mapping that embeds -~ into 
(IR k, < ), and according to Theorem 4.4 dim(E, ~ ) < 
k < N, which contradicts our choice of E. [] 

A definite theorem about the size of vector clocks would 
require some statement about the minimum amount of 
information that has to be contained in timestamps in 
order to define a partial order of dimension N on them. 
Finding such an information theoretical proof is still an 
open problem. 
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5 Characterizing concurrency with concurrent regions 

In the previous section, we gave a brief survey of known 
techniques to characterize causality by timestamping the 
events of a distributed computation. Two main results 
were obtained: 

- By using vector time, it is possible to faithfully represent 
causality. 
- Although several refinements to the basic vector time 
approach are feasible, timestamps characterizing causality 
seem intrinsically complex. 

The latter insight is somewhat disappointing, because it 
might substantially limit the application of vector time in 
practice. Therefore, it is not surprising that alternative 
ways to assess causality were pursued. In this section, we 
will investigate a popular approach, namely the concept of 
concurrent regions. 

5.1 Concurrent regions and concurrency maps 

For some applications like, for example, the detection of 
race conditions in concurrent computations, it is sufficient 
to know whether two arbitrary events e and e' occurred 
concurrently or not; if e II e' does not hold, then the exact 
causal relation (i.e., e ~ e' or e ' ~  e) is irrelevant. One 
might suspect that it is cheaper to supply only this re- 
stricted form of "concurrency information" instead of the 
full causality relation. 

Consider, for example, event x of the distributed com- 
putation depicted in Fig. 11. All events occurring in the 
shaded segments of the time lines of P1 and P2 are causally 
independent from x, and therefore, according to Defini- 
tion 1.2, concurrent with x. These segments form concur- 
rent regions with respect to x. If it were possible to identify 
such regions with only little effort, then detecting concur- 
rency would be simple! 

For  a first step towards this aim, it might be useful to 
visualize concurrent regions with a concurrency map. This 
approach was proposed by Stone, who suggested the use 
of concurrency maps to support the visual analysis of 
concurrent processes [-68, 69]. To this end, the local event 
streams of a distributed computation are partitioned into 
so-called dependence blocks. The underlying idea is that all 
events contained in a dependence block can be regarded as 
a single, atomic "super event", i.e., if one of these events is 
concurrent with a non-local event e, then all the other 
events occurring in that dependence block are concurrent 
with e, too. More formally, let us define an equivalence 
relation (E~, ~ ) on the set of events local to a process Pc as 
follows: 

P3 O--  @ 
x 

Fig. 11. The concurrent regions with respect to event x 



160 

PI 

P2 

P3 

history segments 

Fig. 12. A concurrency map according to Stone 

denendenee Mack 

Definition 5.1. For x, y ~ E~, the relation x M y  holds if 
and only if for all z ~ E\Ei  the following conditions are 
satisfied: 

xLIz i f fy l l z  /x 

x -~  z iff y--* z /x 

z ~ x iff z--* y 

The dependence block DB of an event ei; can now be 
characterized as an equivalence class with respect to 
(E, ~ ), i.e., DB(eij)::= { x ~ E d x ~  ely}. Note, that this 
definition implies that the borders between two depend- 
ence blocks on a time line necessarily lie after a send event 
and before a receive event. 

The causality relation on events induces dependencies 
between different blocks. More specifically, the first event 
("successor event") of some block may depend on the 
occurrence of the last event ("predecessor event") of 
another block on a different time line. That  is, each send 
event is a predecessor event, while the corresponding 
receive event is a successor event. The concurrency map 
is obtained by partitioning the time diagram by vertical 
lines in history segments such that causally dependent 
dependence blocks on different process lines occur in 
different segments, whereas dependence blocks on different 
process lines appearing in the same segment are concur- 
rent. Figure 12 shows a concurrency map of the computa- 
tion depicted in Fig. 11. For more details about the 
construction of concurrency maps, the interested reader is 
referred to [-69]. 

The following transformations which preserve the 
causal dependencies may be applied to concurrency maps: 

(1) The horizontal size of a dependence block may be 
scaled up and down by any factor, as long as blocks on the 
same time line do not overlap. 
(2) The position of events within a dependence block may 
change, as long as their relative order remains untouched. 
(3) Dependence blocks may be moved to the right or to 
the left; they may even cross the boundary of a history 
segment, with the following restriction: The dependence 
block of a predecessor event and the dependence block of 
the corresponding successor event must always remain 
separated by a history segment boundary. 

A concurrency map (together with its feasible transforma- 
tions) implicitly represents all possible total event order- 
ings which are consistent with causality. In [67] it is shown 
that for every distributed computation the construction of 
a concurrency map  is in fact possible, and that for two 
given events e and e', e II e' holds if and only if there is 

a transformation of the concurrency map such that e and e' 
occur in the same history segment. For example, in Fig, 12 
event x and event y are clearly concurrent, because accord- 
ing to rule (2) we can move x one segment to the left, and 
y one segment to the right. Also, x and z are clearly not 
concurrent, because according to rule (3) they have to be 
separated by at least two segment boundaries. 

5.2 Identifying concurrent regions with region numbers 

Stone's dependence blocks are good candidates for the 
construction of concurrem regions. All that is needed is an 
efficient method for the identification of history segments 
and a tag for each block that tells us which history seg- 
ments the block may possibly enter. If  DB(x) may enter the 
same history segment as DB(y), then the events x and y are 
concurrent, otherwise they are causally dependent. 

Ideally, we would like to divide the time diagram of 
a given computation into contiguous regions correspond- 
ing to dependency blocks, and we would like to assign 
some number to each region such that two given events 
x and y are concurrent if and only if the numbers of their 
respective regions satisfy a simple criterion, Can we assign 
appropriate region numbers and define a suitable binary 
relation that characterizes concurrency in the sense of the 
following definition? 

Definition 5.2. Let E denote the set of events of a distrib- 
uted computation, let S denote an arbitrary set, and let 
# ~_ S •  denote an arbitrary binary relation. Let 
b :E-- ,  S denote a mapping. (@, # } is said to characterize 
concurrency, if for all e, e' E E: e e' iff 0(e) # &(e').  

For a given ~9, we say for short that (S, # } characterizes 
concurrency. 

This definition should be compared to Definition 3.1 
where the characterization of causality is defined. 

Unfortunately, it can be shown that the problem of 
characterizing causality is essentially reducible to charac- 
terizing concurrency. Note that once we are able to charac- 
terize concurrency, we can determine whether two given 
events x and v are causally dependent or not; if they turn 
out to be causally related, we can simply use Lamport  time 
to distinguish between x ~ y and y - ,  x. This shows that 
region numbers must have essentially the same complexity 
as time vectors. Therefore the results of Sect. 4.3 still apply. 
That is, we cannot really hope to gain much by substitu- 
ting region numbers for vector time, 

For  a formal proof of our informal reasoning, let us 
assume that we know a mapping r IR, such that 4(e) 
denotes the region number of the region to which event 
e belongs. Let us further assume that a binary relation 
# exists, such that (4~, # ) characterizes concurrency. In 
other words, suppose we are able to identify concurrent 
regions with simple real-valued region numbers. If both 

and # are computable, then we can show that there 
exists an implementation of vector time which only re- 
quires vectors of size 2: 

Proposition 5.3. Let o : E - ~ I R  denote a mapping, and 
let # ~ IR x IR denote a binary relation such that (0, # )  
characterizes concurrency. Then there exists a mapping 



df :E ~ IR x N, and a partial order <' on (IR x N), such that 
(q~', < ' )  characterizes causality. 

Proof. Define q~' as follows: 

(1) 4'(e):= [~b(e), L(e)],  where L(e) denotes the Lamport  
time of event e. 

Next, define < '  as follows: 

(2) 4'(e) <'qS'(e')iff 

--n(q~'(e)[1] #q~'(e')[1]) /~ (~Y(e)[2] < ~b'(e')[2]). 

According to Definition 5.2, we can restate (2) in terms of 
events and their Lamport  times: 

(2') ~b'(e) <'qJ'(e') iff -n(e II e')/x (L(e) < L(e')). 

We note that Lamport  time is consistent with causality. 
Thus, e ~ e' implies qS'(e) <'q~'(e'). If, on the other hand, 
e ~ e' does not hold, it follows that e' ~ e holds implying 
L(e') < L(e), or that e IIe' is satisfied. In either case, 
~b'(e) <'~b'(e') does not hold according to (2'). As a conse- 
quence, (~b', < ' )  characterizes causality. [] 

Actually, (~b', < ' )  is an alternative realization of vector 
time. Note that < '  can be computed with almost as little 
effort as # .  Only one additional vector entry is needed, 
and maintaining Lamport  time does not require any addi- 
tional messages. Note that it is straightforward to extend 
Proposition 5.3 to the general case where we take region 
numbers from the domain IRk instead of IR. Hence, if there 
is a way to implement region numbers based on vectors of 
size k which characterize concurrency, we can immediately 
derive an implementation of vector timestamps of size 
(k + 1) which characterize causality. 

As we have seen in Sect. 4.3, there are good reasons to 
believe that vector time is inherently complex to compute 
and requires vectors of dimension N. Thus, Proposition 
5.3 seems to imply that we cannot hope for region numbers 
which identify concurrent regions smaller than of size 
( N -  1). Anyhow, whatever actual size of vectors is re- 
quired for a realization of vector time, region numbers 
require vectors of essentially the same size. 

An approach for the detection of concurrency based on 
comparing the numbers of concurrent regions is described 
by Spezialetti and Kearns in [66]. In their model, it is 
assumed that there exists an event monitor which observes 
the local state changes (i.e., events) and determines global 
state changes by combining appropriate concurrent local 
events into so-called global events. Consequently, the 
problem that has to be solved is to determine whether two 
given events are concurrent or not. To this end, so-called 
regions are defined local to each process and region num- 
bers are attached to each of them, such that two events 
e and e' are considered as concurrent if and only if their 
corresponding region numbers are equal. Interestingly, 
Spezialetti and Kearns base their notion of concurrency on 
(N, =), i.e., on integer region numbers and on simple 
equality. According to Observation 1.3, however, concur- 
rency is not an equivalence relation; it follows that (N, =)  
cannot suffice to characterize concurrency. Consequently, 
without going into the details of the detection algorithm 
presented in [66], our discussion reveals that Spezialetti's 
and Kearns' notion of concurrency must be incomplete in 
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some way or the other. In fact, Cooper and Marzullo [15] 
present a simple scenario where the proposed algorithm 
fails to detect a global event that actually occurred. 

The discussion presented in this section supports our 
claim that detecting causal relationships in distributed 
computations is far from being trivial. Furthermore, it 
shows that it is important to have a clear understanding of 
the fundamental characteristics of [[ and ~ to avoid 
fundamental misconceptions in the approach that is taken 
to tackle the problem. 

6 Evaluating global predicates 

It is often required to know whether for a distributed 
computation a certain property holds or does not hold. 
Formally, properties are predicates of the global state. An 
important application domain for global predicates is the 
field of debugging. Typically, the expected behavior or 
suspected misbehavior of the system under test is specified 
as a global predicate, and debugging is done by checking 
whether this predicate is satisfied at runfime or not. In 
order to be sensible, the underlying global states on which 
predicates are evaluated must be causally consistent - if 
the effect of an event is reflected by the state, then its cause 
must also be reflected by it. Or, to put it differently, an 
observer of the computation must never observe an effect 
before its cause. However, as we shall see, it is possibly the 
case that different observers see different, mutually exclus- 
ive consistent global states. It might thus happen that one 
observer establishes the truth of a given predicate, while 
another observer does not. This seemingly paradoxical 
situation gives rise to a more detailed analysis of the 
underlying notions and concepts. It turns out that in 
distributed systems, a proper evaluation of global predi- 
cates requires a careful consideration of the causal struc- 
ture that the computation reveals. In this section, the 
impact of causality on global predicate detection is dis- 
cussed, and some detection schemes are surveyed. 

6.1 Computations, observations, and global states 

In the previous sections, we used terms like "observer", 
"observation", or "global state" in a rather informal 
way. Before continuing our discussion, we need to elabo- 
rate these concepts a little further. Our discussion is based 
on some notions which have their origin in concurrency 
theory and in temporal logic. In particular, the subsequent 
presentation shares many concepts with Katz's and 
Peled's work on interleaving set temporal logic [33, 34], 
with Pratt's geometric model of concurrency [56], and 
with Reisig's causality based partial order semantics of 
non-sequential systems [60, 61]. It should be noted, 
however, that most of these theories are based on more 
abstract models (where, for example, the notion of pro- 
cesses in the sense of linearly ordered disjoint subsets of 
events does not exist), and that a different terminology is 
used in most cases. 

Informally, a distributed computation is an execution of 
a distributed program which consists of communicating 
sequential processes. Because of the nondeterminism in- 
troduced by varying message delays, a single distributed 
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Fig. 13. Different but equivalent views of a single, distributed 
computation 

program usually allows several different computations. If 
we assume that each event which appears in the course of a 
computation is timestamped with the real-time instant of its 
occurrence, then each computation corresponds to a unique 
time diagram with real-time axes. Of course, real time is 
generally not available, and any observation of the computa- 
tion suffers from unpredictable notification delays. Hence, 
observations will not preserve the real-time relation be- 
tween the events; it is, however, possible to preserve the 
causality relation, as will be sketched further down. 

If we abstract from real time, then a distributed compu- 
tation, i.e., a single execution of a distributed program, 
allows different views in the sense of different but equiva- 
lent time diagrams, as is shown in Fig. 13. Two time 
diagrams are considered equivalent if one can be trans- 
formed into the other by stretching or compressing the 
process axes (or parts of them) without changing the rela- 
tive order of events. Hence, equivalent time diagrams 
always represent the same partial order of the causality 
relation. It seems plausible to assume that each such time 
diagram represents an equally valid view of the computa- 
tion, and that any observation which allows such a view is 
correct. Therefore, we postulate that an observer is an 
entity which observes event occurrences in a strictly se- 
quential manner, one after the other. Typically, measures 
are taken to guarantee that the observed event sequence is 
consistent with causality, i.e., that cause and effect always 
occur in the correct order to avoid confusion. This can be 
done, for example, by using a causal delivery order proto- 
col as will be described in Sect. 7. Basically, such a protocol 
ensures that the delivery of notification messages obeys the 
so-called triangle inequality [57], requiring that direct 
notification paths are always "shorter" than indirect chan- 
nels via some intermediate process, such that the direct 
messages arrive first and that the event itself is observed 
before its effects. 

Since any member of a class of equivalent time dia- 
grams represents an equally valid view of the computation, 
any vertical projection of the events of such a time diagram 
onto the hypothetical global time axis represents a valid 

observation of the computation. Or, conversely, for a given 
causally consistent observation (where the events are 
stamped with their "observation time") it is possible to 
reconstruct a valid view in the form of a time diagram, as 
shown in Fig. 13. This motivates the following definition: 

Definition 6.1. An observation of a distributed computa- 
tion is a linear extension (E, <<) of the causality relation 
(E, ~ ), such that for all events e ~ E the set {e' ~ El e'<<e} 
is finite. An entity that is capable of obtaining a specific 
observation is called an observer. 

The required finite cardinality of {e' e Ele'<<e} the so- 
called axiom off lni te  causes [73] ensures that, even for an 
infinite set of events~ the observation is fair  in the sense that 
every event on every process is observed within finite time. 

In general, many different observations of a single 
computation exist; a special case is a computat ion consist- 
ing of only a single process, namely, a sequential program: 
Here. exactly one observation is possible. Interestingly, it 
follows from Szpilrajn's theorem [71] that the intersection 
of all possible observations, i.e., what all observations have 
in common, is precisely the causality relation (E, ~ } which 
is the essence of the computation. This shows again that 
the possible observations are all equivalent with respect to 
causality; none of them is superior in reflecting "reality" if 
global time is not available. 

Usually, a O fobat state of a distributed computation is 
defined as a collection of the local states of all processes at 
a certain instant o f  time (for simplicity, we assume that 
messages m transit are appropriately reflected by the local 
states of their senders and receiversl. As global time is not 
available, we need an adequate substitute for the notion of 
a real-time instant - a so-ca!led consistent cut: 

Definition 6.2. A finite subset C _ E is called a consistent 
cut. iff e ~ C implies e' c C for all e' ~ e. 

That is, a consistent cut is a subset of E which is left-closed 
with respect to causality. It follows immediately that the 
causal history of an event (Definition 2.1) forms a consistent 
cut. We can depict a consistent cut in a time diagram by 
drawing a c m  line which separates C on the left from E\ C 
on the right, as shown in Fig. 14. Note that a message can 
never cross the cut line of a consistent cut from right to left. 
for that would imply that the receive event for that message 
belongs to the cut, while the corresponding send event 
which, of course, causally precedes the receipt does not. 
Conversely, any line which is consistent in the sense that it 
cuts the time diagram into a left part and a right part  such 
that no message crosses the line from right to left defines a 
consistent cut. Thus, consistent cuts and consistent cut Iines 

P2j 

e25 
e24 

ez2 l' ~ c u t  c~ 
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Fig, 14. A time diagram, the corresponding state lattice, and a path 
through thal latuce 
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correspond to each other. Intuitively, a cut line can be 
interpreted as an instant of (logical) time that consistently 
partitions a time diagram into past and future. It should 
also be clear that for a given time diagram with a cut line of 
a consistent cut there is always an equivalent time diagram 
where the cut !ine forms a straight vertical line. This 
motivates again that consistent cuts are adequate substi- 
tutes for real-time instants. 

It is now possible to define consistent global states as 
"current" relative to consistent cuts, i.e., along the corres- 
ponding cut line. Informally the global state S(C) of a con- 
sistent cut C consists of the local states of all processes 
taken just after the last event of each process P~ that 
belongs to C (i.e., the right-most event left of the cut line), 
or the initial local state if there is no such event. More 
formally, S(C) is the global state that is reached by succes- 
sively executing all e c C in some linear order that is 
consistent with the causality relation, starting from the 
initial state. Clearly, causally independent (i.e., concurrent) 
events can be executed in arbitrary order without affecting 
the final result S(C). 

As the events of an observation occur one after the 
other, the global state of the computation is evolving over 
time. Each event occurrence denotes a global state 
transition. At every point of an observation, the set of 
events that have been observed so far forms a consistent 
cut. Hence, every observation induces a totally ordered 
sequence of consistent global states. 

The set of all consistent cuts of a computation together 
with operations w and ~ has the mathematical structure 
of a lattice [32, 44, 51, 73]. Therefore, a convenient method 
to graphically represent the consistent cuts of a distributed 
computation is an N-dimensional state lattice [13, 15, 
44, 56] as shown in Fig. 14. In our two-dimensional 
example, each vertical line of the state lattice corresponds 
to an event in P~, and each horizontal line represents an 
event in P2. An intersection point p = Jell, e2j] of two 
event lines denotes the finite set {e11,. �9 �9 ,el~, 
e21 . . . . .  e2j} __ E. Of course, this set is not necessarily 
a consistent cut. For instance, the point with coordinates 
[_e14, e21] denotes a set which contains the receive event 
ea4, but not the corresponding send event e23 preceding it. 
In the lattice of Fig. 14, all intersections denoting consis- 
tent cuts - valid intersection points, for short - are marked 
by dots. (Note that a zero coordinate of an intersection 
point does not correspond to an event; one may, however, 
postulate a dummy event eko for that purpose.) In general, 
a distributed computation comprising N processes is rep- 
resented by an N-dimensional state lattice. The intersec- 
tion points corresponding to an observed event sequence 
form a path [33] in the lattice diagram: 

Definition 6.3. Let L be the state lattice of a distributed 
computation comprising N processes, and let C(p) denote 
the consistent cut that corresponds to a valid intersection 
point p. 
(1) A sequence Po, Pt, Pz . . . .  of valid intersection points is 
called a path through L, if C(po) c C(pl) c C(p2) . . . . .  
and if [ C(Pi)[ = i for all Pi contained in the sequence. 
(2) A path is called complete, if for all e e E some valid 
intersection point Pl is contained in that path such that 
e ~ C(pi). 

As an example, Fig. 14 shows a complete path which 
induces the sequence of consistent cuts ~ ,  {e11}, 
{ell, e21}, {ca1, e21, e12} . . . . .  {elb e21 . . . . .  e16 , e25 } = E. 
Note that every complete path through the state lattice 
induces a sequence of events el, e2, e3 . . . .  , defined by 
el = C(pi)\C(p~-I); for the path shown in Fig. 14 we 
obtain el , ,  e21, e,2 . . . . .  e25. Obviously, this sequence 
defines a total order on E which is consistent with causal- 
ity. Furthermore, it is fair in the sense that every event 
e e E has only a finite number of predecessors with respect 
to that order. Hence, it satisfies Definition 6.1, and it 
follows that every complete path corresponds to an observa- 
tion (and vice versa). 

Recall that every consistent global state corresponds to 
a consistent cut C(p) for some valid intersection point p, 
and that there always exists some complete path contain- 
ing p. In other words, every consistent global state is 
observed by at least one observation (as we would expect). 
However, a single complete path does typically not con- 
tain all valid intersection points of the state lattice. That is, 
a single observation will only reveal a subset of all possible 
global states. As a consequence, two observers of the same 
distributed computation may observe different sets of con- 
sistent global states. For  example, state $I corresponding 
to cut line C1 in Fig. 14 occurs in observation O, = el~, 
e12, e ~ 3 , . . . ,  but obviously not in observation 02 = e11, 
e21, e l z , . . . ,  corresponding to the path marked in the 
figure. This has serious consequences. 

Suppose, for example, that two observers simulta- 
neously observe the computation shown in Fig. 14 to find 
out whether a given predicate ~b defined on the consistent 
global states of that computation is satisfied or not. As- 
sume further that {b holds only for state $1, but not for any 
other possible state. Now, if the first observer makes obser- 
vation O1, and the second observer makes observation 02, 
then the first observer will conclude that ~b holds, while the 
second will claim that the computation failed to satisfy ~. 
Which observation is "correct"? 

Obviously, none of them! The decision whether a 
global state predicate ~b is satisfied in the course of a dis- 
tributed computation depends on the specific observation 
that it refers to. Therefore, an accurate description of 
a predicate's occurrence should be stated as follows: Predi- 
cate ~b holds for the set of observations { 0 1 , . . . ,  Ok} of 
the given computation. That is, a specification of ~b should 
comprise a qualifier denoting the set of observations that it 
covers. The fact that in distributed systems the truth of 
a global predicate depends on the observer might be 
surprising at the first sight - it is, in fact, a phenomenon 
that is unknown in the sequential world where a compu- 
tation has only a single valid observation and the validity 
of a predicate can thus safely be attributed to the computa- 
tion. 

6.2 Possibly and definitely 

In the previous section, we showed that the specification 
of a global state predicate is generally meaningless as 
long as it does not refer to a well-defined set of observa- 
tions. In [-15], Cooper and Marzullo address this issue, and 
they introduce two useful predicate qualifiers, defined as 
follows: 
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Definition 6.4. Let �9 denote a predicate defined on the 
global states of a distributed computation, let L denote the 
state lattice of that computation, and let "~ holds at p" 
mean that �9 holds for the consistent state corresponding 
to intersection point p of lattice L. 
(1) possibly �9 holds iff there exists a path P through L and 
an intersection point p on P such that ~ holds at p, 
(2) definitely q~ holds iff every complete path through 
L contains an intersection point p such that q~ holds at p. 

That is, possibly q~ holds for a given computation if there 
exists at least one observation which reveals the satisfac- 
tion of ~, and definitely ~b holds if all observations observe 
that q~ holds. Note that definitely �9 implies possibly �9 (we 
may safely assume that the set of  observations is not 
empty), and that --7 possibly (-7 cb) implies definitely ~. 
Note further that the term "definitely": is somewhat mis- 
leading, as it only refers to all observations of one particu- 
lar computation, but - due to possible nondeterminism 
- not to all computations of a distributed algorithm. 

Cooper's and Marzullo's predicate qualifiers are 
closely related to some modalities known from modal and 
temporal logic [40], For  example, there is a direct corres- 
pondence between the two qualifiers possibly and definitely 
and the sequence quantifiers EF' and AF of Katz's and 
Peled's interleaving set temporal logic [33, 34]. Note, how- 
ever, that we excluded conflicts from our conceptual 
framework. Therefore, we only deal with a single execution 
(E, ~ )  of a distributed system and its possible observa- 
tions. This differs from the approach generally taken in 
temporal logic; there, all possible executions of a nondeter- 
ministic algorithm are considered, and predicates typically 
contain additional qualifiers denoting the set of executions 
for which the predicate formula holds. 

The predicates definitely ~b and possibly �9 are proper- 
ties of a computation which do not depend on a specific 
observation. Therefore, characterizing a computation by 
finding out whether certain predicates can possibly or will 
definitely hold is an important aspect of distributed debug- 
ging. Typically, we would use definitely to monitor predi- 
cates which specify mandatory states of the computation, 
for instance: "In each process, the variable Counter must 
eventually decrease to zero"; possibly is suitable for the 
detection of constraint violations like, for example: "More 
than one traffic light shows 'green' at the same time". 
Recurrence to the Newtonian model of absolute global 
time ~ may be helpful to give a pragmatic meaning to 
possibly and definitely. Recall that it is generally impossible 
to decide whether an observation reflects the actual real- 
time order of event occurrences. Thus~ if we assume that 
the events have an immediate effect on some "global envi- 
ronment" (e.g., traffic lights on the traffic), then it is not 
clear whether an observed sequence of global states is 
identical to the one that was actual!YexPerienced by the 
environment. With possibly or definitely, however, we can 
simulate an "omniscient" observer by considering all pos- 
sible observations - i.e., all feasible real-time orders of 

'~ As opposed to the relativistic point of view in modern physics 
where the existence of absolute time is denied 

event occurrences - simultaneously. In our traffic light 
scenario, for example, most observers may observe a si& 
nalling sequence where (just by chancel at most one traffic 
light shows "green' at any instant of time, even though 
some feasible real-time order of events would disclose 
a lurking bug in the traffic light synchronization. 

Interestingly, modal operators like, for example, pos- 
sibly or definitely are dispensable for stable predicates, 

Definition 6.5. A predicate ~b of a distributed computation 
is called stable iff it satisfies the following condition: 

If 4~ is satisfied at state S(C) corresponding to some 
consistent cut C of the computation, then �9 is satisfied at 
S(C') for all consistent cuts C' of the computation such 
that C ~ C'. 

Stable predicates have the following remarkable property 
4see also [13, 33, 34]): 

Lemma 6.6. For a stable predicate 4~ defined on the global 
states of a distributed computation, possibly ~ and d@niteIy 
~b are equivalent. 

Proof. As remarked above, definitely �9 implies possibl) cp 
Conversely, suppose that possibly ~b holds for a givext 
computation. Hence. ~P is satisfied at some intersection 
point p of some path P~ where p corresponds to the 
consistent cut C[pL Consider an arbitrary complete path 
P' through the state lattice. As C(p) is finite and P' is 
complete, there exists a point p' on P' such that 
C(p) ~-C(p'). According to Definition 6.2, C(p) is left- 
closed with respect to the causality relation, hence the 
events in C(p')\ C(p) do not causally precede any event in 
C(p). Therefore, it is evident that successively removing 
minimal elements lwith respect to --, ~ from the finite set 
C(p')\ C(p) and adding them to C(p) yields a cut sequence 
which corresponds Lo a continuation of path P from p to 
p'. From the stability of 4~ it follows that 4~ must hold at p' 
on P'. As P' was arbitrarily chosen, the same argument 
holds for any complete path through the lattice, which 
means that possibly �9 implies definitely qv for stable 
predicates. [] 

Lemma 6.6 shows that a stable property that holds in some 
observation will eventually hold in any observation and is 
thus observer-independent. This fact can easily be under- 
stood by considering the N-dimensional state lattice. Ob- 
viously, a stable property holds for all valid intersection 
points in an "upper-right" N-dimensional subcube of  the 
state lattice. If this subcube is not empty, then every 
complete path must eventually enter that subcube: if it is 
empty, then neither possibly ~ nor definitely �9 are satisfied. 
There exists another class of predicates for which it is 
possible to generalize from one observer to all observers. 
namely predicates which depend on a property local to 
a single process [13, 33, 34 I. An in-depth treatment of such 
"'observer-independent" predicates may be found in [13]. 

Because until recently only the detection of stable 
predicates was discussed in the literature. Lemma 6.6 
might explain why modal operators such as possibly or 
d@niteIy were not considered there. It should be noted, 
however, that detecting possibly q~ or definitely q~ is quite 
different from the classical stable predicate detection prob- 
lem [10]. Whereas in the latter case it is usually required 
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that the predicate ~b be stable, and the problem is to detect 
the satisfaction of �9 as soon as possible in the course of 
a computation, the problem for possibly ~b and definitely 
4~ is to decide whether or not a distributed computation 
has these properties. 

In [15], two algorithms based on vector time for the 
detection of possibly ~b and definitely q~ in finite computa- 
tions (i.e., computations where E is finite) are presented. 
Let us call [ C(p)l the level of intersection point p. Basi- 
cally, the algorithm for definitely �9 iteratively computes 
the sets Ao, AI, A 2 ,  �9 - �9 where Ai denotes the set of valid 
intersection points at level i, such that all p in Ai are 
accessible by a path not containing an intersection point at 
a smaller level that satisfies q~. Ao contains the origin of the 
state lattice; Ai+ 1 comprises those valid intersection points 
p for which there exists an immediate predecessor p' s Az 
along some path (i.e., C(p') ~_ C(p) and the levels of p and 
p' differ by 1) such that ~b is not satisfied at p'. If an A~ is 
reached which is empty, then definitely rb holds. If, how- 
ever, the maximum level l =  I E] of the state lattice is 
reached and all elements of Az do still not satisfy q~ (in fact, 
At contains exactly one element), then a path through the 
state lattice exists such that ~ never holds, and therefore 
definitely q~ is not satisfied. 

The algorithm for possibly q~ is similar; as soon as A~ 
contains a member for which rb holds, possibly q) is satis- 
fied and the algorithm terminates. Otherwise, Ai+ ~ is com- 
puted as above. Both algorithms are based on an efficient 
enumeration of the valid intersection points (essentially 
a breadth-first search through the lattice), thus they are 
linear in the number of valid intersections. Unfortunately, 
this can be of order O(KN), where K is the maximum 
number of local events per process, and N is the number of 
processes. The use of vector time and the immense number 
of valid intersections render an on-the-fly application of 
the above algorithms almost prohibitive. 

As a final remark, it should be noted that possibly and 
definitely can be defined without referring to complete 
paths, i.e., observations. In [52], Ochmanski introduces 
the concept of inevitable global states - an equivalent to 
definitely - and extends this notion even to systems for 
which an observation in the sense of Definition 6.1 does 
not exist; it is, however, doubtful, whether an efficient 
algorithm for the detection of inevitability in non-observ- 
able systems is feasible. Furthermore, such systems seem to 
be of little practical relevance. 

6.3 Navigating through the state lattice 

Deciding definitely 4~ conceptually requires the inspection 
of all paths - or at least all consistent global states - of 
the state lattice in the worst case. It is therefore com- 
putationally expensive. While in general the situation 
for possibly ~b is not much better, there exist certain 
predicates ~b for which possibly ~ can be detected quite 
efficiently. Garg and Waldecker give a more formal 
characterization of these predicates in [26]; in essence, 
their definitions comprise global predicates which are 
decomposable into locally detectable parts - such as 
conjunctions or disjunctions of local predicates - whose 
validity can be established in isolation. In the following 
we restrict our attention to such predicates ~, and 

we present a simple algorithm for the detection of pos- 
sibly q). 

The basic idea is to navigate through the state lattice, 
searching for an intersection point where �9 holds. For  an 
efficient realization, it is desirable to restrict the search to 
only one "dimension" of the lattice as long as possible, and 
to change the direction of search only if absolutely neces- 
sary. That is, we execute the events of one specific process 
until we "hit" a local state that may contribute to the 
satisfaction of ~, or until causality constraints force us to 
interrupt the execution of that particular process; next, we 
freeze that process' local state and continue with a different 
process. By executing the computation in such a sequential 
fashion, we reduce the computational complexity of the 
detection scheme from O(K N) to O(KN), or more pre- 
cisely, to O(E). Approaches similar to the one sketched 
here are described in [13, 26, 39]. 

Executing a computation in the proposed manner is, 
however, somewhat difficult to achieve in a distributed 
system where computations are typically nondetermin- 
istic. Blocking all processes but one to obtain the required 
sequential execution would generally cause an unbearable 
distortion of the system's "normal" behavior. That is, the 
so-called probe effect [25] induced by such a method may 
lead to a completely abnormal behavior of the system 
which would render the conclusions drawn from its obser- 
vation almost irrelevant. One way to overcome the prob- 
lems induced by observing the processes during execution 
might be to collect event-traces in an otherwise undistur- 
bed run of the system, and to apply the algorithm sketched 
above after the execution. For instance, one could put all 
traced events in event queues, one for each process, and 
fetch the next event from the respective queue instead of 
performing an execution step of a single process. This 
approach was taken, for example, by Garg and Waldecker 
[26]. The number of relevant events produced in the 
course of a distributed computation could be quite sub- 
stantial, however, and therefore the queues may rapidly 
grow. Furthermore, in a large distributed system the 
management of all process queues is likely to become 
a bottleneck, and tracing all events may already lead to an 
intolerable probe effect. 

In order to avoid undue distortions during the original 
execution, one solution is to re-execute the computation, 
and to generate the events "on demand" only during 
replay. Since distributed computations are usually non- 
deterministic, an identical reproduction of the system's 
behavior requires special precautions. One might, for 
example, try to employ a deterministic scheduling disci- 
pline to enforce reproducibility of the execution. Unfortu- 
nately, centralized scheduling is not appropriate in a 
distributed setting as it would severely limit the potential 
for parallelism. Therefore, a better solution is to provide 
an execution replay facility [37, 38]. This mechanism is 
based on a trace of the outcome of all nondeterministic 
steps which each process took during an original execution 
of the distributed system (e.g., the selection of an incoming 
message, or reading some volatile data). During replay, 
each process simply consults its trace records whenever 
a nondeterministic decision has to be taken~ Thus, by 
forcing all processes to reproduce their exact sequence of 
nondeterministic execution steps, the original behavior of 
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the system - including its communication pattern is 
preserved. Tracing only "nondeterministic events" (instead 
of all events which may affect ~b) diminishes the probe 
effect, reduces the amount  of trace data, and allows to 
detect global predicates during replay with virtually no 
(logical) detection delay [39]. Moreover, during replay the 
execution speed may be reduced in order to match the 
observer's processing capacity, and on each re-execution 
the observer may concentrate on particular aspects, thus 
reducing the space requirements for each analysis. 

Execution replay is particularly valuable for the evalu- 
ation of global predicates which typically causes substan- 
tial overhead in communication and computation. For  the 
subsequent discussion, we will therefore assume that either 
some kind of deterministic replay of the original computa- 
tion, or at least a facility for the collection of event traces is 
available, such that we can safely study the effect of the 
events of each process in isolation, without changing the 
observed overall behavior of the system. It should be 
noted, however, that the problem of replaying distributed 
computations is difficult in its own right, and may require 
substantial computational effort. For a more detailed dis- 
cussion, see [37, 38, 50]. 

To continue our discussion of the navigation scheme 
sketched above, consider, for example, the distributed 
computation depicted in Fig. i4 and the global predicate 
~b -= ((x = 1) A (y --- 1)), where x and y are local variables 
of P1 and P2, respectively. Note that x = 1 and y = 1 are 
two predicates whose truth can be established locally. To 
detect possibly q), any assignment to the variables x or y is 
a significant event that may affect 4~. We propose the 
following algorithm which detects whether possibly 

holds for such a "locally decomposable" predicate ~: 

(1) Put the system in its initial state. 
(2) Check if ~ is satisfied for the current global state. 
If so, the detection algorithm terminates with possibly 

-=-= TRUE. 
(3) Select some executable process P (i.e., a process whose 
next execution step does not causally depend on the occur- 
rence of a non-local event that has not yet been executed 
and thus blocks further local execution) according to the 
following preferences: 

a) select a process that fails to satisfy its local predi- 
cate, s or else 

b) select a process that is causing the blocking of some 
other process. 

If no selectable process exists, the detection algorithm 
terminates, yielding possibly �9 = FALSE. 
(4) Execute the next step of the selected process P, and 
continue until one of the following conditions is met: 

a) P's local predicate holds, or 
b) P becomes blocked at a receive event, waiting for 

the corresponding send event to occur, or 
c) P terminates. 

r 

J It is assttmed that each process whose local state does not affect the 
truth of �9 has a local dummy predicate which is always satisfied but 
does not contribute to the satisfaction of 4~ 
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Fig. 15. Detecting possibly tqx '.} , , = I~} in the compumnoa o; 
Fig. 14 

[n case a), connnue with s~ep (2 }. In case b~, continue with 
step (3). Otherwise/case c), the detection algorithm term- 
mates, yielding possibly (b =_ FALSE. 

Note that in step (3) of the algorithm, we may be forced to 
select a process which already satisfies its local predicate. 
However, should such a situanon arise, this means that 
there exists some process which is currently blocked and 
still has not reached its local predicate. Under these cir- 
cumstances, we have no other choice but to continue with 
the process that causes the blocking, even if the locat 
predicate of that process is then invalidated. The prefer- 
ences for the selection of an executable process stated in 
step (3) ensure that the algorithm will detect the satisfac- 
tion of possibly �9 at the earliest possible "logical moment"~ 
i.e., at a minimal consistent cut which satisfies ~b. 

Figure 15 illustrates the application of the algorithm 
for the computation depicted in Fig. 14. In terms of the 
state lattice, we select a path through the lattice such that 
we move in one dimension (to the right, say) as long as we 
can, until we find x = 1 to hold. Next, we move in an 
upward direction until y = 1 holds. Only if there is no 
valid intersection in the current direction, then we are 
forced to circumvent the barrier li.e., the shaded areas in 
Fig. 15), and change the current direction. The generaliz- 
ation of this method for N-dimensional lattices is straight- 
forward, and interpreting the algorithm as a directed walk 
through the state lattice guarantees that it is free of cycles 
and will eventually terminate. It should also be noted that 
one could easily derive a more sophisticated navigation 
scheme, where several processes that fail to satisfy their 
local predicate are executed in parallel. We leave this 
optimization to the interested reader. 

For simple global predicates like the one used in the 
example above, our algorithm is quite efficient. Provided 
we are able to execute the computation in the required 
deterministic fashion, no message timestamps and no time 
vectors are needed. Using execution replay, there is no 
need to explicitly construct the state lattice, which would 
require too much space in general: the required causality 
information is implicitly represented by the specific way in 
which the global state evolves. In the simple example 
shown in Fig. 14 and Fig. 15. the navigation algorithm will 
inevitably lead us to the global state (els, e25) where 

holds. 
One drawback of the navigation algorithm is that it 

can only check for one global predicate at a time. Another. 
more important  restriction of this approach is that it will 
fail for slightly more sophisticated predicates, as shown m 
Fig. 16. Here. each process reaches a local state which may 
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Fig. 16. Detecting possibly ((x = t)/x (y = 1) v (x = 2)/x (y = 2)) 

contribute to the desired predicate ~b. However, the local 
states are contradictory with respect to 4~, i.e., they mu- 
tually exclude each other for the predicate to hold. Thus, 
as soon as we reach x = 1 in P1 and y = 2 in P2, we have 
to decide which process should be continued next. If we 
resume P1, then ~b will never hold, but if we resume P2, 
then the predicate is eventually satisfied. The example 
shows that the simple navigation approach is not generally 
applicable for the detection of possibly q~ for arbitrary 
global predicates ~. 

6.4 Currently r 

The discussion in the previous sections revealed that useful 
modalities such as possibly are in general computationally 
intractable. Except for some special cases where we were 
able to derive quite efficient detection schemes, we have to 
resort to the general algorithm proposed by Cooper and 
Marzullo, as the scenario of Fig. 16 indicates. The fact that 
their algorithm considers all possible observations and 
may therefore require an immense number of steps rules 
out the detection of possibly �9 in many practically relevant 
situations. If we consider such intractable predicates, we 
have to confine ourselves to simpler, although maybe less 
powerful modalities. In [-15], Cooper and Marzullo pro- 
pose a modality which is based on a single observation, the 
real-time observation of the computation, which we define 
as follows: 

Definition 6.7. The total order (E, < ) of the events of 
a distributed computation ordered according to their real- 
time occurrence is called the real-time observation of the 
computation. 

Note that the real-time observation is an observation in 
the sense of Definition 6.1. In Sect. 6.1, we pointed out that 
from within the system, the real-time observation is indis- 
tinguishable from any other observation of the computa- 
tion; however, as a distributed computation usually affects 
its global external environment, an external observer 
might nevertheless be able to identify the real-time order of 
all events. Of course, implementing an external real-time 
observer might be difficult or even impossible if one has no 
control over the observed system. It might, on the other 
hand, be possible that the observer is able to force the 
system to produce events only in such a way that they are 
faithfully observable. This, of course, raises the question to 
what degree such an influence of the observer on the 
observed system is tolerable - we would certainly not 
accept a central scheduler that forces a synchronized se- 
quential execution of the computation. In [-15], a qualified 
global predicate called currently q) is defined as follows: 

Definition 6.8. The global predicate currently ~9 defined on 
the local process states of a distributed computation is said 
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to hold, if ~b is still satisfied at the moment at which it is 
reported by some dedicated monitoring process. 

Thus, monitoring currently ~b addresses both detection 
accuracy and detection delay; it aims at a reliable on-the-fly 
detection of a global predicate ~, such that the unavoid- 
able notification delay will not allow �9 to vanish before it 
is recognized. In this respect, currently eb is superior to 
possibly ~) which may be detected long after ~ was first 
satisfied. To match its intended meaning, currently 
q~ should eventually be satisfied if �9 holds at some global 
consistent state occurring in the real-time observation of 
the computation. 

Similar to Spezialetti and Kearns mentioned earlier, 
Cooper and Marzullo define events as state changes that 
might affect 4~, and they assume a dedicated central 
monitoring process M which does not participate in the 
computation, but is only responsible for the predicate 
detection. In order to detect currently ~b - i.e., to simulate 
a real-time observation - certain processes are temporarily 
blocked by the monitor M. This may, of course, affect the 
behavior of the distributed computation. Therefore, the 
monitor may cause the system to perform a computation 
that is very unlikely to occur in an unmonitored execution, 
although the monitor's intrusion will never lead to a com- 
putation that is not feasible in principle in the un- 
monitored system. Thus, monitoring wilt only yield 
possible, although maybe improbable cases. For  applica- 
tion domains like, e.g., debugging, the effects of intrusion 
are clearly undesirable they are the price we have to pay 
for the efficiency of the detection algorithm. In cases, 
however, where the detection of global states is an integral 
part of the system (e.g., in distributed reactive systems 
[-29, 41] where the system itself is essentially a monitor 
receiving stimuli from its environment through a network 
of sensors, and reacting to these stimuli through actuators) 
a moderate amount of intrusion may be tolerable as long 
as sufficient potential for concurrency is retained. Cooper's 
and Marzullo's algorithm for the detection of currently 

can be outlined as follows: 

(1) Before the computation starts, the monitor is informed 
about the initial state of each process. 
(2) Whenever a process executes an event e that could 
make ~ true, it (asynchronously) sends the relevant part of 
its current state to the central monitor. The monitor main- 
tains the latest received state information for each process 
of the distributed computation. This rule applies only if e is 
not an invalidating event, see next rule. 
(3) Whenever a process reaches an event e that could 
make ~ false (a so-called invalidating event), it first trans- 
fers the relevant part of its local state to the monitor and 
blocks before executing the event. On notification, the 
monitor then flushes all links from the processes to the 
monitor, thereby collecting the most recent local states of 
all processes. This is done by sending a REQ message to all 
other processes and requiring an immediate ACK. If �9 is 
not found to hold by the time all replies have returned, 
then the monitor releases the blocked process by sending 
an "unblock" message and updates the recorded state of 
the blocked process to "undefined". "Undefined" signifies 
that the monitor must not draw any conclusions until 
it receives new state information from that process. If, 
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Fig. 17. Monitoring currently (x~ + x2 > 5) according to Cooper 
and Marzullo 
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Fig. 18. Counter-example: ~--- (xl + x2 > 5) holds but is not 
detected 

however, 4> holds, then currently 4> is reported and the 
algorithm terminates. 
(4) On receiving an "unblock" message, a blocked process 
executes the event it was waiting at and sends the relevant 
part  of its new state to the monitor. 

The details of the algorithm may be found in [15]. Inter- 
estingly, the monitor  M does not actually perform a real- 
time observation because, according to rule (2), the event 
notification messages are not necessarily received in real- 
time order by M. However, by flushing all channels on 
every invalidating event, the algorithm tries to retain all 
essential properties of a real-time observation with respect 
to the detection of 4>. 

Note that flushing the communication links with 
R E Q - A C K  pairs requires F IFO channels. Apart from the 
rather high number of control messages, the proposed 
algorithm is computationally cheap - in particular, it does 
not require vector time. Figure 17 shows an example of 
how the algorithm works. The reason why a process is 
blocked when it tries to (potentially) invalidate �9 is to 
allow all other processes enough time to send their latest 
local states to the monitor, thus to enable the detection of 
a temporary holding of 4> before it can vanish again. 

Cooper 's  and Marzullo's method is highly intrusive 
and may substantially slow down the distributed compu- 
tation. The proposed algorithm tries to reduce the 
monitoring overhead by restricting the blocking of pro- 
cesses to invalidating events. However, if predicates like, 
for example, 4> - (xl + x2 = 5) are considered, then each 
assignment to x~ or x2 which changes the value of the 
variable is an invalidating eventl Thus, invalidating events 
may occur very frequently, causing a lock-stepped execu- 
tion with many control messages. 

Besides these practical issues, there is an even more 
important  conceptual objection to mention. The proposed 

protocol is incomplete in that it can miss predicates zhat 
hold in a true real-time observation of the computation. 
Figure 18 shows such a case where 4> ~_ (xt + x2 > 5) 
occurs but is not detected. In the given scenario, P2 
changes its local state to x2 = 3 just after R has replied to 
a REQ message, but before the invalidating event x1 := 1 
in process P1 occurs. For  the short interval marked on the 
time line of the monitor  the current state of the system is 
x2 = 3 and (still) xl = 2; hence 05 holds, but is missed 
because at that time the monitor has recorded "undefined" 
as the current state of P~o One could try to "fix" the 
problem by immediately updating the recorded local state 
to the new value as soon as the "block" message arrives at 
the monitor. But then again the algorithm misses certain 
predicates, as Fig. 17 shows, if we replace the initial assign- 
m e n t x ~ = 2 i n P ~  b y x l = 3 .  

Obviously, the deficiency remains wiaether the effect of 
an invalidating event is defined to occur  already during or 
only after the interval in which the process is blocked. 
Avoiding this problem would require to introduce some 
additional blocking. For example, one could block each 
process on every relevant event - not just invalidating 
events as suggested in [151; alternatively, each process 
could be blocked after sending an ACK message, until 
4> has been decided. Both methods would, of course, mean 
to substantially increase the intrusiveness of the algorithm. 
If such an overhead is unacceptable, we have to pretend 
that the current state is "undefined" until the next state 
update is received after unblocking, thus leaving the ob- 
server with a "blind spot" for some predicates which occur. 
This is exactly what Cooper and Marzullo do. Then. 
however, the notion of a currently true predicate becomes 
rather vague - if currently 4> is not detected, then it might 
still be possible tha~ a true real-time observation of the 
computation would yield the truth of ~. As a consequence, 
we do not reach sufficiently trustworthy and meaningful 
conclusions by trapping predicate occurrences with the 
proposed algorithm. 

In summary, the currently qualifier seems only to be 
appropriate if the underlying system already comprises 
a (possibly distributedt monitor  which is responsible for 
the collection of global state information, and if the only 
global states of interest are those seen b y  this monitoring 
agent. If, however, our aim is to analyze a given distributed 
system by making observations with a minimal impact on 
the system's "natural" behavior, then the detection of cur- 
rently 4> is too intrusive, and the occurrence of currently 
4> (or the lack thereof i is probably not meaningful. The 
discussion of currently 4> gwes further evidence for our 
claim that in general real tLrne is not appropriate for the 
analysis of asynchronous distributed systems. 

7 Detecting behavioral patterns 

The approaches for global predicate evaluation dis- 
cussed So far concentrated on properties of the global 
state. Alternatively, we may focus our attention on state 
transitions rather than on actual states. Recall that every 
event entails a transition from one global state to anothcr~ 
Thus, by detecting the satisfaction of predicates describing 
the relative causal order in which certain events occuri 
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we may gain sufficient insight into the resulting system 
state. 

Consider, for example, the distributed traffic lights 
control system sketched above, and let event e~ denote 
"light i turns green". If the predicate 4} = (el II ez) is satis- 
fied at some instant of time during the execution of the 
control system, then the system is unsafe because it fails to 
guarantee mutual exclusion, even if the actual global state 
sequence which is observed by the environment is correct. 
For  many applications - in particular, for the analysis of 
synchronization in concurrent systems - it suffices to 
determine the order in which certain events occur in 
a computation. Detecting such basic patterns of a system's 
behavior and combining them into high-level abstractions 
of activity is generally referred to as the behavioral abstrac- 
tion approach [5]. In practice, the detection of behavioral 
patterns and the detection of global states can be combined 
by enriching the events with appropriate local state in- 
formation which is passed to a central monitor for evalu- 
ation. In fact, current approaches typically apply such 
hybrid techniques [9, 48, 54]. 

One important step towards the detection of behav- 
ioral patterns appears in [48]. In this seminal paper, Miller 
and Choi define a class of distributed predicates, and they 
present a detection algorithm for that class. Their work is 
influenced by the event description language EDL proposed 
by Bates and Wileden [5], but in contrast to EDL Miller's 
and Choi's specification do not require global time. Fur- 
thermore, not only the relative order, but also the causal 
relationship between events can be expressed in their for- 
malism. However, conjunction and disjunction operators 
are restricted to combine simple predicates based only on 
the state local to a single process. So-called linked predi- 
cates that specify event sequences ordered according to 
the causality relation can be specified, but concurrency 
of events cannot be expressed. Thus, their algorithm 
can only detect a limited class of behavioral specifica- 
tions. In fairness to their work, it should be noted 
that Miller's and Choi's approach works on-the-fly 
and does not require complex mechanisms such as vector 
time. 

Haban and Weigel [27] address the problem of more 
sophisticated specifications. They aim at the detection of 
arbitrary causal relations between events, and they assume 
that vector time is available. Based on some primitive event 
specifications denoting local event classes of a single 
process, the authors define global event specifications 
recursively as follows: 

(1) Every primitive event specification is a global event 
specification. 
(2) If Ga, G2, G3 denote global event specifications, then 
GI v G2, Gt /x Gz, GI--,G2, GI[IG2, GI@G2, and 
@G3(G1, G2) denote global alternative, conjunctive, 
happened-before, concurrent, negation, and between speci- 
fications, respectively. 

Note the difference between event specifications which de- 
note certain classes of events that may occur repeatedly, 
and events which belong to a specific event class and have 
a unique occurrence. For  the rest of this section, we use 
capital letters to denote event classes or specifications; if 
required, several instances of the same event class are 

B t B 2 

e21 e22 ~ / ' /  ell el2 

P2 - - @  ~ ~ ~ 
~ A2 

Fig. 19. Single detection of the global event specification (A ~ B) 

C 1 B C 2 D F 

P1 el 1 E G 

@B(C, D)? @F(E, G) ? 

Fig. 20. @B(C, D) and @F(E, G) are detected, but do they really 
bold? 

distinguished by using upper indices, while lower indices 
denote different event classes or specifications. 

The satisfaction of a specification is defined recursively. 
A primitive event specification G is satisfied if a local event 
e of class G has occurred, and the vector time V(G) = V(e) 
is assigned to G. A specification G a v  G2 holds as soon as 
one of its operands is satisfied, and it inherits the time- 
stamp of that operand. G a A G 2 requires both operands to 
be satisfied, and inherits the timestamp of the operand 
most recently detected. G, I] Gz is treated in the same way, 
but additionally requires that V(G1)II V(G2) holds. Like- 
wise, G1--+G2 requires V(GI)--+ V(G2) to hold, and 
V(G 1 --+ G2) is defined to be V(Gz). GI@G2 is satisfied if 
G1 holds while G2 does not; V(GI@G2) inherits the time- 
stamp of Gl. And finally, @G3(G1, G2) requires that 
G1-+ G2 be satisfied, while no G3 exists which satisfies 
both G1--* G3 and G3 ~ G2; the timestamp inherited is 
that of G2. 

The details of the detection scheme may be found in 
[27]. An important aspect of the algorithm is its require- 
ment that each event may contribute to a global event 
specification at most once; i.e., as soon as an event has 
been used to satisfy part of a specification, this event is 
consumed with respect to that specification. It may, of 
course, contribute to the satisfaction of several, distinct 
specifications. This rule has a pragmatic background: It 
reduces the number of event occurrences that have to be 
stored, and it prevents the detection of "redundant" event 
occurrences, as Fig. 19 demonstrates, where only a single 
occurrence of A --* B is detected (i.e., A 2 ~ B 1 as soon as B t 
occurs) instead of all four combinations of A ~  B j that 
hold. 

Unfortunately, by consuming events and also by allow- 
ing the absence of events to denote a global event occur- 
rence (i.e., by introducing the negation operator), the 
meaning of certain syntactically valid specifications is 
defined in a counterintuitive way, as is shown in Fig. 20, 
where the processes P1 and P2 are observed by the moni- 
tor M. According to the definition given in [27], the 
specification @B(C, D), which reads "there is no event of 
type B between an event of type C and an event of type D", 
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is satisfied, because the first occurrence C 1 of C is con- 
cealed by the second, C 2. Nevertheless, C ~ and D form an 
interval such that C a ~ B and B ~ D hold, and therefore 
@B(C, D) should rather not hold. The example shows that 
the pragmatic decision to consume events may lead to 
situations where crucial events are simply ignored. 

The transmission delays between the local processes 
and the event monitor  raise another problem. Consider, 
for example, the specification @ F(E, G) in the scenario of 
Fig. 20. Here, E ~ F ~ G holds (hence, the specification is 
not satisfied), but the notification of the event monitor  
M about  the occurrence of F suffers from a significant 
delay such that a direct transmission from Pa to M takes 
longer than a transmission from P1 to M via Pz, violating 
the triangle inequality mentioned in Sect. 6.1. Thus, as 
soon as E ~ G is detected - and F is not detected in 
between - the monitor  will reach the conclusion that 
@F(E, G) holds, which is, of course, wrong. 

Fortunately, this problem can be avoided by using 
a causal order delivery protocol to inform the monitor  
about event occurrences. That  is, i fa  notification about the 
occurrence of event e reaches the monitor  M, it must only 
be delivered after the notifications about  all events belong- 
ing to the causal history C(e) have been delivere& In 
Fig. 20, for example, the monitor  should delay the delivery 
of G until F - which clearly belongs to C(G) - has been 
delivered. Causal delivery order at M guarantees that 
M has always a consistent view of the global state [1, 63], 
i.e., that the sequence of observed events is a linear exten- 
sion of the causality relation. There is a straightforward 
protocol which implements causal delivery order 
[14, 35, 58, 64]: 

(1) For  each process P~, M maintains a counter 
observed[i], initialized to 0. 
(2) On receiving a notification message m = (e, i) indicat- 
ing the occurrence of event e at process P~ with vector 
t imestamp V(e), the delivery of m is delayed until m 
becomes deliverable. 
(3) m = (e, i) is deliverable iff (observed [ i ]  = V(e)[i]  - 1) 
and (observed[j] > V(e)[j] for all j 4 = i). 
(4) If m = (e, i) becomes deliverable, it is actually delivered 
and observed[i] := observed[i] + 1. 

To understand why this algorithm is correct recall that 
according to Observation 2.3, the vector t imestamp V(e) is 
just a shorthand notation for the causal history C(e) of 
event e. The vector observed maintained by the above 
algorithm counts the number of events at each process 
which have been observed so far. What  step (3) essentially 
requires is that all events of process P~ locally preceding 
e have already been observed (thus implementing the 
F IFO property for notification messages), and that at least 
those non-local events at Pj belonging to the causal history 
of e (i.e., ej~, . . . .  ejv(~)tj~) have already been observed, too. 
It follows by induction that this delivery rule ensures 
causal delivery order. It is also easy to see that eventually 
every notification message becomes deliverable. Thus, by 
adding this algorithm to the protocol described in [27], 
the satisfaction of specifications like @F(E, G) in Fig. 20 
can indeed be correctly detected. 

There is a general problem with the occurrence of 
global events which are non-atomic - when, exactly, does 

/ 01 

/ B 

P3 | ~" 
A 

Fig. 21. Is IA i B] ~ C satisfied, or A --~ ~B C}? 

such an event "happen"? Tha~ is, what is the appropriate 
(logical) t imestamp that should be assigned to its occur- 
rence? Consider. for example, Fig. 21. and the specification 
(A B) --, C. Is it satisfied? if we suppose that B is detected 
later than A, then - according to the definition given in 
[27] - it is not because the subexpression (A !1BI inherits 
the t imestamp V(B), which means that VIA B) < VfCI 
does not hold as required. K however, B is detected before 
A, then VIA Bt - V(A), and {A B ) ~  C is satisfied. 

To exclude such ambiguities, Haban  et al. [28] revised 
the original definitions of C27]. In particular, they 
define V(A B~ = sup{V(A), V{B)} which means that 
(A B t - ,  C does not hold in Fig. 21 regardless of the 
order in which A and B are detected. In this new version, 
however, the definition lacks symmetry, because now 
A ~ ( B I  C) holds in the example above, whereas 
(A B)--, C does not. Intuitively, the meaning of 
{A Ii B ) - ,  C should probably be defined as {A B), ' ,  
( t A ~ C )  v (B--*C)), or maybe tA B ~ A ( A ~ C ) / ,  
(B ~ C). Unfortunately, [t is non-trivial to extend such 
definitions to arbitrary compound specifications in 
a meaningful way, and the resulting specifications tend to 
become rather bulky. 

The reason why timestamp inheritance yields counter- 
intuiuve semantics in some cases is because global speci- 
fications do not generally describe atomic events; rather, 
they denote activities which have a non-zero duration, 
as illustrated in Fig. 23. Assigning a single t imestamp to 
a behavioral pattern essentially means to deny its non- 
atomic nature. Consequently, the timestamps of all sub- 
expressions should in some way or the other affect 
the satisfaction of a global specification. This. however, 
rules out simple timestamp inheritance such as those 
considered above. 

The question of how to specify the occurrence of non- 
atomic events is addressed by Fidge in [180 19]. Like 
Haban and Weigel, he aims at the detection of significant 
global state changes which are characterized by specifica- 
tions based on local (i.e., primitive) predicate expressions. 
However, instead of assigmng unique time instants to 
event specifications as in [27], he proposes to determine 
appropriate stare intervals instead. More specifically, two 
events s and r are assigned to the occurrence of a primitive 
specification G (i.e., to a local state change of a single 
process which causes the satisfaction of G); s denotes 
the event that leads to the satisfaction of G. and t denotes 
the next local event that invalidates G again. G is said 
~o be satisfied in the interval I~G)= [s,t]. Foilowing 
this approach, Is, t] can safe1 y be regarded as denoting an 
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interval of time - namely, IV(s), V(t)] - during which G is 
satisfied. Note that the intervals belonging to primitive 
specifications are strictly local to one process. It is straight- 
forward to define the following relations between local 
intervals t l  = Is, t] and I2 = [u, v]: 

- 1 1  precedes 12 - t ~ u 
- I1 i n c l u d e s I 2 - s ~ u / x v ~ t  

I1 and I2 may overlap ==--7 (11 precedes 12)/x--1(12 
precedes 11) 

Based on these relations, and given two primitive specifica- 
tions G~ and Gz with corresponding intervals I(G1) and 
I(G2) during which the respective specifications are satis- 
fied, we may now define G1 ~ G2 ~ (I(G1) precedes I(G2)) ,  
and G1 JI G2 =- (I(G1) and I(G2) may overlap). Similar def- 
initions for G~ A G2 as well as for G1 v G2 are feasible as 
long as G1 and G 2 a re  primitive specifications local to the 
same process. The details may be found in [18, 191. 

Unfortunately, it is rather difficult - if not impossible 
- to extend the relations between primitive specifications 
to arbitrary global specifications in a sensible way. In 
particular, assigning meaningful intervals to compound 
specifications is an open problem. There is, for example, no 
obvious choice for the interval which should be assigned to 
GI ~ G2, given that I(G1) and I(Gz) are known local 
intervals. Note, for instance, that the "natural" choice for 
I(G1 ~ G2) - the interval formed by the lower bound of 
I(G1) and the upper bound of I(G2) - may comprise 
logical time instants (between the upper bound of I(G1) 
and the lower bound of I(G2)) at which neither G1 nor G2 
holds, which is different from what one would typically 
expect. Another problem occurs if a compound specifica- 
tion leads to interval fragmentation. Consider, for in- 
stance, the specification G1 /x --7 G2, in a situation where 
G1 and G 2 a re  local to the same process, with I(G1) 
including I(G2). Under these circumstances, one would 
expect that I(G~ /x - 7  G2) denotes not a unique interval, 
but should, in general rather comprise two intervals, both 
of which are contained in I(G1), adjacent to /(G2). But 
what if I(G~ /~ --7 G2) actually denotes two intervals and 
occurs as a subexpression of a more complex specification? 
These examples show that it is generally impossible to 
reasonably combine primitive specifications in order to 
obtain more general global specifications. It seems that 
such problems are inherent to all specifications based on 
atomic event occurrences, even if time intervals instead of 
time instants are used. 

Another approach to behavioral pattern detection is 
due to Hseush and Kaiser. They propose a formalism 
called data path expressions [30] which bears a strong 
resemblance to Haban's and Weigel's global event speci- 
fications, but avoids most of their problematical aspects 
- in particular, negation (like, e.g., Haban's and Weigel's 
@ operator) is excluded. (Negation is problematic because 
it is often difficult or even impossible to define when 
exactly a negated event first "occurs", in particular, if 
upper bounds for transmission delays are not known.) 
Basically, data path expressions extend generalized path 
expressions [9-] with a concurrency operator such that 
both causal dependence and causal independence between 
event occurrences can be expressed. However, instead of 
the "-~ " operator used by Haban and Weigel, only the 

weaker sequencin 9 operator " ; "  is provided, with ~ B" 
defined as "A is an immediate causal predecessor of B". As 
an example, Haban's and Weigel's specification 
(A ~ B --, C) corresponds to the equivalent data path ex- 
pression "A; (A v C)*; B; (A v B)*; C", where "X*"  de- 
notes zero or more occurrences of subexpression X. Note 
that the transitive closure implicit in the causality relation 
must be explicitly stated by the data path expression. 
Consequently, global event specifications are more 
compact than their data path equivalent; an automated 
conversion from the former to the latter is, of course, 
feasible as long as a specification does not contain the 
negation operator. Dealing only with event sequences pre- 
vents the need for interval specifications as have been 
proposed by Fidge. 

For a given data path expression, Hseush and Kaiser 
construct an equivalent predecessor automaton which is 
able to recognize that expression. Predecessor automata 
are similar to, but extend the concept of finite-state auto- 
mata. In [30], a rule set for recursively transforming data 
path expressions into their recognizing automata is pre- 
sented. For brevity, we do not further discuss the concept 
of predecessor automata and the recognition process. It 
should be noted, however, that predecessor automata can 
become quite complex; for example, if we have recognizers 
for the data path expressions X and Y which comprise 
n (or m, respectively) internal states, then the predecessor 
automaton recognizing "X concurrent Y" requires n x m 
internal states. Ponamgi et al. have implemented a debug- 
ging tool for multithreaded programs based on data path 
expressions and predecessor automata [54]. However, 
their prototype tool lacks support for a more convenient 
specification of high-level patterns of behavior. In [54], it 
is also noted that an automatic reduction of data path 
expressions would be desirable in order to obtain more 
compact predecessor automata, thus making recognition 
more efficient. This is particularly important because the 
" ~ "  operator is not supported directly, but has to be 
converted into a series of sequencing operators, yielding 
rather complex expressions. 

It should be noted that the scheme proposed by 
Hseush and Kaiser does not require vector time. In par- 
ticular, there is no need to assign time instants (or time 
intervals) to each specification as is required by Haban and 
Weigel or Fidge. Furthermore, expressing causal depend- 
ence with only the sequencing operator avoids ambiguities 
like the one depicted in Fig. 19 (note that "A; (A v C)*; B" 
is matched exactly once by "A1; A2; BI"), so there is no 
need for event consumption. And as Hseush and Kaiser 
exclude negation from their formalism, they prevent the 
potential problems depicted in Fig. 20. And finally, defin- 
ing "(A [[ B); C" to require both "A; C" and "B; C" yields 
a symmetrical solution for the situation shown in Fig. 21. 

As a final remark, it should be noted that the detection 
of behavioral patterns requires an anticipation of the sys- 
tem's behavior, i.e., a pattern must be specified in advance 
to be observable. Unexpected behavior - even if it has the 
same effect on the global state as the expected one - is not 
captured by the observation. Thus, only selected aspects of 
the complex causality structure are revealed. This is quite 
different from the general global predicate detection tech- 
niques described in previous sections. 
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8 C o n c l u s i o n s  

Distributed programs are difficult to develop and to ana- 
lyze. This is due to their inherent characteristics such 
as parallelism, nondeterminism, and the unavailability of 
global state and global time. The fact that these aspects 
have still not been completely mastered at the conceptual 
level is one of the reasons for the lack of adequate tools for 
the design and analysis of distributed systems. However, 
distributed computing is almost ubiquitous today. Thus, 
there is an urgent demand for more powerful and more 
sophisticated programming environments which are able 
to overcome the problems arising from distribution in 
order to exploit its potential benefits like increased speed, 
availability, and reliability. Much work has been dedicated 
to this issue, but surprisingly little has been achieved so far. 

As we tried to show in this paper, the lack of practical 
realizations of adequate tools is - among other reasons 
- due to the fact that we still lack appropriate methods to 
deal with the complex causality structure of distributed 
programs which is the key to understanding their behav- 
ior. Fortunately, it seems that the situation is improving 
now. At least from a theoretical point of view, causality in 
distributed computations is being increasingly well under- 
stood. It is now widely accepted that the traditional 
Newtonian model of distributed computations, which is 
based on the notion of absolute global time, is insufficient 
to reflect the relativistic aspects of systems which are 
asynchronous, physically distributed, and suffer f rom no- 
ticeable communication delays [55~. The partial order 
semantics of distributed computations expressed by the 
"happened before" relation [36] - as opposed to the tradi- 
tional interleaving semantics where an underlying total 
order of event occurrences (i.e., the "real-time order,)  is 
implicitly assumed - triggered major progress in the the- 
ory of distributed computing. As a result, different types of 
logical clocks were proposed to capture some notion of 
causality, culminating in the advent of vector time and 
a general definition of consistent global states, Unfortu- 
nately, the theoretical insight into the relativistic nature of 
distributed computations failed to entail a corresponding 
stimulus on the development of  actual tools. This reluc- 
tance to apply the new findings has several reasons. 

First of all, there exists no well-established, agreed- 
upon formalism for reasoning about causality in distrib- 
uted systems, and the system models found in literature 
often lack conciseness and differ substantially. This "Babel 
of languages" impedes the exchange of knowledge and 
experience, and makes published results difficult to assess. 
As a Consequence, the relativistic nature of the compound 
system formed by the observer and the observed is not yet 
sufficiently understood by the computing community. 
Therefore, many approaches suffer from slight misconcep, 
tions. For example, it is often not taken into account that 
different observers typically observe different global states 
of the system; states and state transitions, or atomic and 
non-atomic events are often confused, causing severe 
shortcomings. A second reason for the lack of suitable 
tools is the complexity inherent to the causality structure, 
which leads to tool designs dominated by efficiency con- 
siderations. In the past, this prevented, for example, the 
widespread use of vector time, and provoked dubious 

"optimizations" like monitoring the absence of events, or 
consuming event occurrences. Finally and maybe most 
importantly - the theoretical insights gained so far are 
almost discouraging. The intricacy of distributed compu- 
tations exceeded common expectations. For  example. 
there seems to be no representation of causality more 
compact than vector time. Instead of simplifying matters~ 
the known results rather seem to muddy the waters, and 
the lack of global control in distributed computations, the 
inherent nondeterminism preventing their reproducibility, 
as well as the overwhelming amount of information which 
is essential for their analysis further exacerbates the prob- 
lems. Thus. current experience confirms our claim that 
distributed programming is still an art rather than a welP 
established technique. 

Our discussion indicates several possiNe directions of 
future work. One aim could be a relaxaticn of the causality 
relation. Recall that --, indicates potential, but no actual 
causal relationships. Events occurring at the same process~ 
for example, are totally ordered by the causality relation. 
although some of them are presumably not causally re- 
lated. One of the reasons why most contemporary work 
only considers potential causality - or essential ca usality, 
as it is called in [33] is that the order Of events within 
each process is uniquely determined by the local thread of 
control. It may therefore be argued that although not 
causally enforced, the local event order is in fact total all 
observers of a process will see the same sequence of events. 
Another argument is that, from a technical point of view. 
causality tracking and the ~robtem of deciding whether 
two events are causally related is much more involved for 
actual causality than for potential causality; hence one 
would expect that the conceptual and practical problems 
discussed in this paper are even more intricate for actual 
causality. Nevertheless, it may be interesting to investigate 
the potential benefits of actual causality (such as indicating 
potential intra-process concurrency and yielding more ac- 
curate debuggang information on the cause for unexpected 
observed behaviori, and to find means to handle the more 
sophisticated structure of actual causality. In [3], Ahuja 
et al. discuss these aspects and propose a timestamping 
scheme which reflects actual causality. 

In contrast to these considerations., one might try to 
find a timestamping scheme which yields a partial event 
order somewhat stricter than the order induced by vector 
time. but which relaxes the (total} order of Definition 3.6 
derived flom Lamport  time. The aim is to trade accuracy 
for ease of computation. In [16], Diehl and Jard propose 
interval orders [221 as a means to obtain event timestamps 
of pairs of integers with relatively little computational 
effort. If the causal structure of a distributed computation 
is in fact that of an haterval order, then their scheme yields 
timestamps which actually characterize causality. In gen- 
eral, however, this condition is not  satisfied. Nevertheless, 
it might be fruitful to develop new progrm~ammg para- 
digms which induce causal orders that are guaranteed to 
be as easy to handle as, for example, interval orders. 

A different approach is pursued by Meldal et al. in 
[473. Like Diehl and Jard, they aim at a more efficient 
computation of the causality relation by restricting the 
problem domain. Their work is based on  the observation 
that for some applications causal relationships are only of 
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interest  for messages tha t  are sent  to the same des t ina t ion  
process;  fur thermore ,  communica t i on  pa ths  are often 
stat ic and  k n o w n  at  compi le  time. Thus,  by  explo i t ing  
the logical  s t ructure  of  the computa t ion ,  and  also the 
physical  s t ruc ture  of  the ne twork  on which the c o m p u t a -  
t ion is executed, subs tan t ia l  savings in commun ic a t i on  
cost  and  s torage  requi rements  are achievable.  On ly  pa r t  of 
the causa l i ty  in fo rmat ion  is requi red  because  some dy- 
namic causal  re la t ionships  can be inferred from the given 
static structures,  while others  are k n o w n  to be i r re levant  
for the ma t t e r  at  hand.  The feasibil i ty of this technique 
depends,  however ,  on the pa r t i cu la r  system under  consid-  
erat ion.  

In  this paper ,  we surveyed some representa t ive  
app roaches  to the p rob l em of de te rmin ing  causal  re la t ion-  
ships in d i s t r ibu ted  computa t ions .  The  discussion shed 
some light on the ma in  p rob lems  and some fundamenta l  
l imi ta t ions  ar is ing in this research area. We saw tha t  none  
of  the presented  schemes is sufficiently ma tu re  to serve as 
a genera l -purpose  mechan i sm for the analysis  of causal i ty.  
Ideal ly,  a tool  should  combine  the speed and re l iabi l i ty  of 
a u t o m a t e d  de tec t ion  with the h u m a n  in tu i t ion  and flexi- 
bility. The  p r o b l e m  of an t ic ipa t ing  the re levant  behavior ,  
ass igning meaningful  semant ics  to general  g lobal  predi-  
cates, and  f inding correct  and  efficient a lgor i thms for their  
detect ion,  remains  to  be a challenge. 

It seems tha t  d i s t r ibu ted  compu ta t i ons  are in t r ins ical ly  
difficult to unders tand ,  and  perhaps  a s imple way to de- 
scribe their  behav io r  does no t  even exist. Anyhow,  the ho ly  
grail of  causal i ty  analysis  has no t  been found yet. 
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