
COVER FE ATURE

COMPUTER	30 Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE	

effort consistency. Perhaps surprisingly, some systems
sacrifice both consistency and availability, yielding better
results than could be achieved otherwise. Viewing CAP in
the broader context of safety/liveness tradeoffs provides in-
sight into the feasible design space for distributed systems,
shedding some light on the manner in which algorithm
designers and software engineers have circumvented the
theorem.

CAP THEOREM
Brewer first presented CAP in the context of a Web ser-

vice6 implemented by a set of servers distributed over a
set of geographically diverse datacenters. Clients issue
requests to the service, which sends back responses. This
notion of a Web service is intentionally abstract and can
embrace a wide variety of applications including search
engines, e-commerce, online music services, and cloud-
based data storage.

CAP terminology
CAP implies that a Web service must trade off consis-

tency, availability, and partition tolerance. To prove the
theorem, it is necessary to carefully understand each of
these three terms.

Consistency. The first part of CAP refers to consistency,
which is, informally, the property that each server returns
the right response to each request, that is, a response
that is appropriate to the desired service specification.
The exact meaning of consistency depends on the type
of service.

Trivial services do not require any coordination among
the servers—for example, a service that returns the value

A lmost 12 years ago, Eric Brewer introduced
the idea that there is a fundamental tradeoff
between consistency, availability, and network
partition tolerance. This tradeoff, known as the

CAP theorem, has been widely discussed ever since.
Some of the interest in CAP derives from the fact that

it illustrates a general tradeoff in distributed computing:
the impossibility of guaranteeing both safety and liveness
in an unreliable distributed system.1-5 Informally, an algo-
rithm is safe if nothing bad ever happens. Consistency as
defined in CAP is a classic safety property: every response
sent to a client is correct. By contrast, an algorithm is live
if something good eventually happens. Availability is a
classic liveness property: every request eventually receives
a response. Finally, a system can be unreliable in many
ways, experiencing crash failures, message loss, malicious
attacks, Byzantine failures, and so on. CAP is simply one
example of this tradeoff between consistency and avail-
ability in unreliable systems.

Because of this inherent tradeoff, it is necessary to
sacrifice one of these properties. Accordingly, some sys-
tems guarantee strong consistency and provide best-effort
availability; others guarantee availability and provide best-

The CAP theorem is one example of a more
general tradeoff between safety and live-
ness in unreliable systems. Viewing CAP in
this context provides insight into the in-
herent tradeoffs and the manner in which
they can be circumvented in practice.

Seth Gilbert, National University of Singapore

Nancy A. Lynch, Massachusetts Institute of Technology

Perspectives
on the CAP
Theorem

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

31FEBRUARY 2012

of the constant π to 100 decimal places. Trivial services do
not fall within the scope of the theorem.

Weakly consistent services involve some distributed co-
ordination, but each server can make progress on its own.
As a result, they too do not fall within the scope of CAP and
hence can avoid sacrificing availability while still provid-
ing some weak consistency guarantees. A distributed Web
cache is an example of such a service.

Atomic services are defined in terms of atomic opera-
tions, which are described by a sequential specification. A
sequential specification describes a service in terms of its
execution on a single, centralized server: the server main-
tains some state, and it processes each request in order,
updating the state and generating a response. A distributed
service is atomic if, for every operation, there is a single
instant between the request and response at which the
operation appears to occur. From the clients’ perspective,
it is as if a single, centralized server executes all the opera-
tions according to the sequential specification.

Complicated services either cannot be specified sequen-
tially or require more intricate coordination, transactional
semantics, and so on.

Our formulation of CAP focuses on Web services that
implement a read/write atomic shared memory: the service
provides its clients with a single (emulated) register, and
each client can read or write from that register. (Commonly
used consistency conditions such as sequential or causal
consistency typically yield similar CAP-like results.)

Availability. The second part of CAP refers to availabil-
ity, which is, informally, the property that each request
eventually receives a response. A fast response is clearly
preferable to a slow response, but in the context of the
theorem, even requiring an eventual response is sufficient
to create problems. (In most real systems, of course, a
response that is too late is just as bad as no response at all.)

Partition tolerance. The third part of CAP refers to
partition tolerance. Unlike the other two requirements,
partition tolerance is really a statement about the underly-
ing system rather than the service itself: communication
among the servers is unreliable, and the servers can be
partitioned into multiple groups that cannot communicate
with one another. We model a partition-prone system as
one that is subject to faulty communication: messages can
be delayed and sometimes lost forever. (Again, in practi-
cal terms, a long-delayed message might as well be lost.)

Proving CAP
In sum, CAP can be stated as follows: in a network sub-

ject to communication failures, it is impossible for any Web
service to implement an atomic read/write shared memory
that guarantees a response to every request.

There is a relatively simple proof of the theorem.6
Assume the service consists of servers p1, p2, ..., pn

, along
with an arbitrary set of clients. Consider an execution in

which the servers are partitioned into two disjoint sets:
{p1} and {p2, ..., pn

}. Some client sends a read request to
server p2. Because p1 is in a different component of the
partition from p2, the system loses every message from p1
to p2. Now consider the following two cases:

	 1.	 A previous write of value v1 has been requested of p1,
and p1 has sent an ok response.

	 2.	 A previous write of value v2 has been requested of p1,
and p1 has sent an ok response.

No matter how long p2 waits, it cannot distinguish these
two cases, hence it cannot determine whether to return
response v1 or v2. Its choice is to either eventually return a
(possibly wrong) response or to never return a response.

In fact, if communication is asynchronous—if processes
have no a priori bound on how long it takes to deliver a
message—then the same situation can occur even in
executions in which there are no permanent partitions

and no messages are lost. In the above scenario, server p2
eventually must return a response, even if the system is
partitioned; if the message delay from p1 to p2 is sufficiently
large that p2 believes the system to be partitioned, then it
may return an incorrect response despite the lack of parti-
tions. Thus it is even impossible to provide good responses
when there are no partitions and bad responses only when
there are partitions.

THEORETICAL CONTEXT
The tradeoff between consistency and availability in a

partition-prone system is an example of the general trade-
off between safety and liveness in an unreliable system.
This notion that it is impossible for a system to achieve both
properties has played a key role in distributed computing.

Consistency, availability, and partition tolerance
A safety property requires that at every point in every

execution, the property holds. Consistency requirements
are typically safety properties. For example, to say that an
algorithm guarantees atomic consistency is to claim that
in every execution, every response is correct with respect
to the “prior” operations.

A liveness property, by contrast, says nothing about
the state at any specific instant; it requires only that if
an execution continues for long enough, then eventually

CAP states that any protocol imple-
menting an atomic read/write register
cannot guarantee both safety and
liveness in a system prone to partitions.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	32

something desirable happens. In this context, CAP states
that any protocol implementing an atomic read/write reg-
ister cannot guarantee both safety and liveness in a system
prone to partitions.

Agreement is impossible
Understanding the relationship between safety and liv-

eness properties has been a long-standing challenge in
distributed computing. The issue achieved widespread
prominence in 1985 when Michael Fischer, Nancy Lynch,
and Michael Paterson showed that fault-tolerant agreement
is impossible in an asynchronous system.3

Their research focused on the problem of consensus, in

which each process p
i
 begins with an initial value v

i
, and

the processes all must agree on one of those values. There
are three requirements for consensus:

•• agreement—every process must output the same
value;

•• validity—every value output must have been provided
as the input for some process; and

•• termination—every process must eventually output
a value.

Agreement and validity are safety properties, while ter-
mination is a liveness property. The impossibility of
consensus is thus an important example of the inherent
tradeoff between safety and liveness.

The safety requirements of consensus are more difficult
to meet than those we have considered with respect to
CAP: achieving agreement is (provably) harder than simply
implementing an atomic read/write register. Thus, CAP
also implies that it is impossible to achieve consensus in a
system subject to partitions.

Fischer, Lynch, and Paterson did not consider a system
with partitions; they were concerned with the more benign
issue of crash failures. Specifically, they assumed that one
unknown process can cease operation while most of the
processes in the system continue to communicate reli-
ably. Their surprising conclusion was that consensus is
impossible in such a system. In fact, for every purported
consensus protocol that guarantees agreement and valid-
ity, there is some execution in which there are no failures
and yet the algorithm never terminates. In the case of con-
sensus, safety and liveness are impossible if the system is
even potentially slightly faulty.

This result has had significant implications. For ex-
ample, the problem of consensus is at the heart of the
replicated state machine paradigm, one of the most
common approaches for building reliable distributed ser-
vices.7-10 This paradigm achieves availability by replicating
the service across a set of servers. The servers then agree
on every operation performed by the service. The impos-
sibility of fault-tolerant consensus implies that services
built according to the replicated state machine paradigm
cannot achieve both availability and correctness in an
asynchronous network.

Safety/liveness tradeoff for consensus
Distributed computing researchers soon began ex-

ploring safety/liveness tradeoffs in more depth. Their
efforts provide context for analogous questions raised
by CAP.

Synchrony. Given that safety and liveness are impos-
sible in sufficiently unreliable systems, the first natural
question to arise was under what conditions it is possible
to achieve both. Much research has concentrated on net-
work synchrony: What level of synchrony is necessary to
avoid the inherent tradeoff? What level of network reliabil-
ity is needed to achieve both consistency and availability,
subject to a given level of faulty behavior?

A network is said to be synchronous if it satisfies the
following properties:

•• every process has a clock, and all the clocks are
synchronized;

•• every message is delivered within a fixed and known
amount of time; and

•• every process takes steps at a fixed and known rate.

We can think of such systems as progressing in rounds;
within each round, each process sends some messages,
receives all the messages that were sent to it in that round,
and performs some local computation.

If a system is wholly synchronous, consensus can be
achieved—that is, the tradeoff between safety and liveness
can be wholly avoided. Notably, consensus requires f + 1
rounds, if up to f servers can crash.11,12 As consensus is
impossible in an asynchronous system if there is even one
crash failure, how much synchrony is needed to achieve
consensus?

Cynthia Dwork and coauthors attempted to answer
this question by exploring various partial synchrony
models.13 Most notably, they introduced the idea of even-
tual synchrony: a system can experience periods of both
synchrony and asynchrony, but as long as it eventually
stabilizes and maintains synchrony for a sufficiently long
time, it is possible to achieve consensus. Subsequent re-
search has demonstrated that f + 2 rounds of synchrony
are adequate.14,15

In the case of consensus, safety and
liveness are impossible if the system
is even potentially slightly faulty.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

33FEBRUARY 2012

There is also a connection between a system’s level of
synchrony and its crash tolerance. A synchronous system
can achieve consensus for any number of failures, while
in an asynchronous system it is impossible to achieve con-
sensus for even one failure. In an eventually synchronous
system, however, it is possible to achieve consensus only
if there are < n/2 crash failures, where n is the number
of servers. If there are ≥ n/2 crash failures, consensus is
again impossible (due to partitioning, much like in CAP).
Most practical consensus implementations today are ex-
plicitly or implicitly designed for eventually synchronous
systems.7,9,16

Another line of research has pursued a different ap-
proach to the question of how much synchrony is needed
to achieve consensus. Tushar Chandra and colleagues
introduced the idea of a failure detector that provides suf-
ficient information for processes to achieve consensus in
an asynchronous crash-prone system.2,17 One example of
a failure detector is a hello protocol that monitors which
neighbors in a network are active. Another example is a
leader election service, which identifies a reliable server to
act as the leader.

Marcos Aguilera and colleagues pursued a third line of
research, exploring a specific minimal set of link reliability
and synchrony assumptions for achieving consensus.18,19

Consistency. A second natural question arising from
the inherent safety/liveness tradeoff relates to consis-
tency: given that the network is unreliable, what is the
maximum level of consistency that can be achieved?

In response to this question, Soma Chaudhuri intro-
duced the concept of set agreement.20 Much like consensus,
each process proposes a value and eventually outputs a
value that was initially proposed by some process—that
is, the validity and termination conditions are identical.
Unlike consensus, however, output values can disagree in
a limited way. Specifically, for k-set agreement, there can
be up to k different output values.

This weaker consistency guarantee leads to a sequence
of problems: 1-set agreement, 2-set agreement, 3-set agree-
ment, ..., n-set agreement. Note that 1-set agreement is
identical to consensus, and n-set agreement is trivial—that
is, each process simply outputs its own initial value. Con-
sequently, 1-set agreement is impossible if there is even
one crash failure, while n-set agreement can tolerate an
arbitrary number of crash failures.

A seminal series of studies demonstrated that k-set
agreement can be achieved if and only if there are at
most k – 1 crash failures.1,4,5 Thus, k-set agreement is the
“most” agreement achievable in a system with k – 1 fail-
ures that ensures availability. Chaudhuri and colleagues
related the degree of consistency to the running time: in
a synchronous system with t failures, at least t k/  + 1
rounds are necessary and sufficient to achieve k-set
agreement.21

PRACTICAL IMPLICATIONS
To overcome CAP’s negative implications, practitioners

building and deploying distributed services over unreliable
networks have traditionally chosen to sacrifice either avail-
ability or consistency. However, alternative approaches
have emerged in practice that sacrifice both. Some such
systems balance the required level of availability and con-
sistency. Others segment a larger system into different
components, each of which can choose a different tradeoff.
The resulting design often yields a system that responds
well to most user requests, even under bad network con-
ditions, and also provides high levels of consistency when
and where needed.

Best-effort availability
Perhaps the most common approach to dealing with

unreliable networks is to design a service that guaran-
tees consistency—that is, correct operation—regardless
of network behavior. Software architects then optimize
the service to provide best-effort availability, that is,
to be as responsive as possible given current network
conditions. This design makes sense when communica-
tion is typically reliable and timely—for example, when
all the servers running a service are in the same data-
center—and partitions or other network anomalies occur
only rarely.

A recent popular example of this approach is Chubby,
a coarse-grained lock service and metadata service for
distributed networks that supports the Google File System,
BigTable, and other key Google infrastructure elements.7,22
Google also uses Chubby as a naming service to replace the
Domain Name System (DNS).

At the heart of Chubby is a distributed database with a
primary-backup design. The system ensures strong consis-
tency among the servers using a replicated state machine
protocol, Paxos,9 to maintain synchronized logs. Chubby
operates effectively as long as no more than half the serv-
ers fail and the network is reliable.

Most of the time, there are no partitions in the system.
Each Chubby “cell” is deployed in a single datacenter, and
communication within a cell is typically fast and reliable.
The primary replica rarely fails, and when it does, chang-
ing to another backup results in only occasional delays.
Overall, Chubby provides very high availability most of
the time.

Practitioners building and deploying
distributed services over unreliable
networks have traditionally chosen
to sacrifice either availability or
consistency.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	34

CAP has played an important role in
defining the design space, and has
implications for the changing world
we inhabit today.

Best-effort consistency
For some applications, sacrificing availability is not an

option: users require that the application be responsive in
all situations. Moreover, when the application is deployed
over a wide area rather than within a datacenter, avail-
ability can degrade rapidly. In such situations, designers
sacrifice consistency to guarantee a response—preferably
a fast one—at all times. Consequently, the response might
not always be correct. The system provides only best-effort
consistency.

The classic example of this approach is seen in Web
caches, services that store content such as images and
video on servers in globally distributed datacenters. When-

ever a user requests a webpage, the system delivers content
from a nearby Web cache, if it is available; otherwise, it re-
trieves the data from the Web server on which the content
was originally hosted.

Such a system guarantees very high availability: the
proximity of the cache servers to end users ensures that re-
sponses are rapid, and network connectivity issues rarely
prevent a response. On the other hand, the consistency
guarantees of Web caching are weaker. When the system
updates a webpage, it might take some time for the new
content to propagate to all the cache servers. The caching
service does its best to provide up-to-date content, but
there is no assurance that all users accessing a webpage at
any given time receive the exact same content.

For Akamai and other content delivery service provid-
ers, this tradeoff makes sense. Users viewing Web content
do not necessarily require strong consistency: there is
usually little harm if users in different locations view
slightly different versions of a webpage or if the content
is a little out of date. On the other hand, Web users have
little patience—a fast response is critical. In addition, the
widespread geographical distribution of Web users implies
the need to sacrifice consistency to achieve sufficient avail-
ability and performance.

Balancing consistency and availability
Some systems allow for an adjustable tradeoff between

consistency and availability. For example, the owner of
a website may specify how out-of-date the content may
become: it might be acceptable for some content to be one
hour out of date, but not one day out of date. A website
owner who specifies this weaker level of consistency is

provided in return with a higher level of availability. By
setting a threshold for out-of-date data, system operators
can precisely specify the desired CAP tradeoff.

Haifeng Yu and Amin Vahdat explored this approach
with the TACT (Tunable Availability and Consistency Trade-
offs) toolkit, which enables replicated applications to
specify the desired level of continuous consistency. A nota-
ble aspect of their system is the ability to update this value
dynamically, as the application executes.23,24 Consider, for
example, an airline reservation system. When most of the
seats on an airplane are available, the system can rely on
somewhat out-of-date data without overbooking the plane.
As the plane fills, however, the system requires increas-
ingly accurate data to prevent overbooking. Using TACT,
the system could request increasing levels of consistency
as the number of available seats diminishes.

Such a tunable system guarantees neither strong consis-
tency nor continual availability: data can be inconsistent,
and a major network partition can still render the service
unavailable. Nevertheless, this type of tradeoff can sig-
nificantly increase the system’s robustness to network
disruption, before it must compromise availability.

Segmenting consistency and availability
Many systems do not have a single uniform require-

ment: some aspects require strong consistency and others
high availability. For such systems, a natural approach to
circumventing CAP is to segment the system into compo-
nents that provide different types of guarantees. Doing so
might again produce a service that overall guarantees nei-
ther consistency nor availability, yet ultimately each part
of the service provides exactly what is needed.

The system can be partitioned along various dimen-
sions. The precise guarantees that segmentation provides
are not always clear and are specific to the given applica-
tion and the particular partitioning scheme.

Data partitioning. Different types of data can require
various levels of consistency and availability. For exam-
ple, an online shopping cart might be highly available,
responding rapidly to user requests, yet occasionally
inconsistent, losing a recent update in anomalous cir-
cumstances. An e-commerce site’s product information
likewise could be somewhat inconsistent: users will toler-
ate slightly out-of-date inventory data. However, checkout,
billing, and shipping records must be strongly consistent:
users will be unhappy if a final order does not reflect their
intended purchase. Different data might require different
tradeoffs.

Operational partitioning. Different operations may
require different levels of consistency and availability.
Consider, for example, a system that guarantees high
availability for read-only operations, while operations
that modify the database need not respond during net-
work partitions. For an e-commerce site, a purchase

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

35FEBRUARY 2012

operation must be consistent, while a query operation
can return out-of-date data. To achieve a good user experi-
ence, Yahoo’s PNUTS (Platform for Nimble Universal Table
Storage) system provides such tradeoffs for different read
and write operations.25

Functional partitioning. Many services can be divided
into subservices with their own requirements. For exam-
ple, an application might use a service such as Chubby for
coarse-grained locks and distributed coordination (strong
consistency), a service such as DNS to handle naming
(relatively weak consistency but high availability), and a
third subservice with a different consistency/availability
tradeoff for content distribution.

User partitioning. Network partitions, and poor net-
work performance in general, typically correlate with
geographic distance: users far away from servers are more
likely to experience poor performance. Thus, a service
like Craigslist might elect to divide its servers among two
different datacenters in the US—one on the east coast and
one on the west coast. The service would, for example,
rely on the west coast datacenter to provide high availabil-
ity to users from California cities; moreover, as it stores
and maintains the California data within a single data-
center, the system can more easily achieve consistency
among the west coast servers. The same holds true for
east coast users that rely on the east coast datacenter. (On
the other hand, New York users inquiring about Craigslist
ads in San Francisco might experience weaker perfor-
mance under this design.) A social networking site might
similarly try to partition its users to ensure high avail-
ability among groups of friends.

Hierarchical partitioning. Some applications are orga-
nized hierarchically, with partitioning occurring multiple
times along different dimensions. At the top level, an
application encompasses the whole world or the entire
database; subsequent levels of the hierarchy partition
the world or database into smaller parts. At each level of
the hierarchy, the system might provide a different level
of performance: better availability toward the leaves, less
consistency toward the roots. For example, in descending
a geographically organized hierarchy, CAP’s limitations
become less onerous as the relevant servers become better
connected.

S ince the CAP theorem was first formulated over
a decade ago, the networked world has changed
significantly, creating new tradeoffs to explore and

new challenges to overcome. The theorem has played
an important role in defining the design space, and has
implications for the changing world we inhabit today. The
same safety/liveness tradeoffs raised by CAP arise when
considering issues of scalability and network security, and
when developing mobile and wireless networks.

Increasingly, systems must be scalable to accommodate
future growth as well as today’s needs. Intuitively, a system
is scalable if it can use new resources efficiently to handle
more load. CAP hints at a tradeoff between scalability and
consistency (and latency): maintaining consistency among
more resources requires more communication, which is
subject to safety/liveness tradeoffs. This might explain why
even within a datacenter, where partitions rarely occur, it
is difficult to efficiently scale strongly consistent protocols
like Paxos.

Severe attacks on networks are on the rise. For example,
denial-of-service attacks are becoming a near-continuous
threat to everyday network operations. These sorts of
attacks create safety and liveness issues. CAP, however,
addresses network partitions, and a DoS attack cannot
simply be modeled as a network partition. Similarly, mali-
cious users are increasingly hacking servers and otherwise
disrupting major Internet services. Tolerating such attacks
requires a new understanding of consistency/availability
tradeoffs.

CAP was initially intended to address wide-area Internet
services. Today, however, mobile devices initiate a signifi-
cant and growing percentage of Internet traffic. Many of
the same CAP tradeoffs also apply to mobile networks and
are even harder to overcome: wireless communication is
notoriously unreliable, and message latencies can vary
considerably.

In addition, many of the applications deployed in wire-
less networks have different properties than traditional
Internet services like search engines and e-commerce
websites. For example, they are heavily influenced by
geography and proximity; they are organized around
social interactions; and privacy considerations are more
immediate. By reexamining CAP in the context of wireless
networks, we might better understand the unique tradeoffs
that occur in these types of scenarios.

References
	 1.	 E. Borowsky and E. Gafni, “Generalized FLP Impossibility

Result for t-Resilient Asynchronous Computations,” Proc.
25th Ann. ACM Symp. Theory of Computing (STOC 93),
ACM, 1993, pp. 91-100.

	 2.	 T.D. Chandra and S. Toueg, “Unreliable Failure Detectors
for Reliable Distributed Systems,” JACM, Mar. 1996, pp.
225-267.

	 3.	 M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility
of Distributed Consensus with One Faulty Process,” JACM,
Apr. 1985, pp. 374-382.

	 4.	 M. Herlihy and N. Shavit, “The Topological Structure
of Asynchronous Computability,” JACM, Nov. 1999, pp.
858-923.

	 5.	 M. Saks and F. Zaharoglou, “Wait-Free k-Set Agreement Is
Impossible: The Topology of Public Knowledge,” SIAM J.
Computing, Mar. 2000, pp. 1449-1483.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

LISTEN TO GRADY BOOCH
“On Architecture” Podcast

www.computer.org/onarchitecture

COVER FE ATURE

COMPUTER	36

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

	 6.	 S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Fea-
sibility of Consistent, Available, Partition-Tolerant Web
Services,” ACM SIGACT News, June 2002, pp. 51-59.

	 7.	 T.D. Chandra, R. Griesemer, and J. Redstone, “Paxos Made
Live: An Engineering Perspective,” Proc. 26th Ann. ACM
Symp. Principles of Distributed Computing (PODC 07), ACM,
2007, pp. 398-407.

	 8.	 L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, July 1978, pp. 558-565.

	 9.	 L. Lamport, “The Part-Time Parliament,” ACM Trans. Com-
puter Systems, May 1998, pp. 133-169.

	10.	 B.W. Lampson, “How to Build a Highly Available System
Using Consensus,” Proc. 10th Int’l Workshop Distributed
Algorithms (WDAG 96), Springer, 1996, pp. 1-17.

	11.	 L. Lamport and M. Fischer, “Byzantine Generals and Trans-
action Commit Protocols,” opus 62, unpublished paper,
rev. 25 Apr. 1984; http://research.microsoft.com/en-us/um/
people/lamport/pubs/trans.pdf.

	12.	 N.A. Lynch, Distributed Algorithms, Morgan Kaufmann,
1996.

	13.	 C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in
the Presence of Partial Synchrony,” JACM, Apr. 1988, pp.
288-323.

	14.	 P. Dutta and R. Guerraoui, “The Inherent Price of Indul-
gence,” Proc. 21st Ann. ACM Symp. Principles of Distributed
Computing (PODC 02), ACM, 2002, pp. 88-97.

	15.	 D. Alistarh et al., “How to Solve Consensus in the Smallest
Window of Synchrony,” Proc. 22nd Int’l Symp. Distributed
Computing (DISC 08), Springer, 2008, pp. 32-46.

	16.	 M. Castro and B. Liskov, “Practical Byzantine Fault Tol-
erance and Proactive Recovery,” ACM Trans. Computer
Systems, Nov. 2002, pp. 398-461.

	17.	 T.D. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest
Failure Detector for Solving Consensus,” JACM, July 1996,
pp. 685-722.

	18.	 M.K. Aguilera et al., “Communication-Efficient Leader Elec-
tion and Consensus with Limited Link Synchrony,” Proc.
23rd Ann. ACM Symp. Principles of Distributed Computing
(PODC 04), ACM, 2004, pp. 328-337.

	19.	 M.K. Aguilera et al., “On Implementing Omega in Systems
with Weak Reliability and Synchrony Assumptions,” Dis-
tributed Computing, Oct. 2008, pp. 285-314.

	20.	 S. Chaudhuri, “More Choices Allow More Faults: Set Con-
sensus Problems in Totally Asynchronous Systems,”
Information and Computation, July 1993, pp. 132-158.

	21.	 S. Chaudhuri et al., “A Tight Lower Bound for k-Set
Agreement,” Proc. IEEE 34th Ann. Symp. Foundations of
Computer Science (SFCS 93), IEEE CS, 1993, pp. 206-215.

	22.	 M. Burrows, “The Chubby Lock Service for Loosely-
Coupled Distributed Systems,” Proc. 7th Symp. Operating
Systems Design and Implementation (OSDI 06), Usenix,
2006, pp. 335-350.

	23.	 H. Yu and A. Vahdat, “Design and Evaluation of a Conit-
Based Continuous Consistency Model for Replicated
Services,” ACM Trans. Computer Systems, Aug. 2002, pp.
239-282.

	24.	 H. Yu and A. Vahdat, “The Costs and Limits of Availability
for Replicated Services,” ACM Trans. Computer Systems,
Feb. 2006, pp. 70-113.

	25.	 B.F. Cooper et al., “PNUTS: Yahoo!’s Hosted Data Serving
Platform,” Proc. VLDB Endowment (VLDB 08), ACM, 2008,
pp. 1277-1288.

Seth Gilbert is an assistant professor in the Department of
Computer Science at the National University of Singapore.
His research focuses on fault tolerance and scalability in
large-scale, highly dynamic distributed systems. Gilbert
received a PhD in computer science from Massachusetts
Institute of Technology. Contact him at seth.gilbert@comp.
nus.edu.sg.

Nancy A. Lynch is the NEC Professor of Software Science
and Engineering in the Department of Electrical Engineer-
ing and Computer Science at Massachusetts Institute of
Technology, where she also heads the Theory of Distributed
Systems (TDS) research group at the Computer Science and
Artificial Intelligence Lab (CSAIL). Her research focuses on
distributed algorithms and impossibility results and on the
formal modeling and verification of distributed systems.
Lynch received a PhD in mathematics from MIT. She is an
ACM Fellow and a member of the National Academy of
Engineering. Contact her at lynch@theory.csail.mit.edu.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 21,2023 at 18:43:42 UTC from IEEE Xplore. Restrictions apply.

