
COVER FE ATURE

COMPUTER	30 Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE	

effort consistency. Perhaps surprisingly, some systems 
sacrifice both consistency and availability, yielding better 
results than could be achieved otherwise. Viewing CAP in 
the broader context of safety/liveness tradeoffs provides in-
sight into the feasible design space for distributed systems, 
shedding some light on the manner in which algorithm 
designers and software engineers have circumvented the 
theorem.

CAP THEOREM
Brewer first presented CAP in the context of a Web ser-

vice6 implemented by a set of servers distributed over a 
set of geographically diverse datacenters. Clients issue 
requests to the service, which sends back responses. This 
notion of a Web service is intentionally abstract and can 
embrace a wide variety of applications including search 
engines, e-commerce, online music services, and cloud-
based data storage.

CAP terminology
CAP implies that a Web service must trade off consis-

tency, availability, and partition tolerance. To prove the 
theorem, it is necessary to carefully understand each of 
these three terms. 

Consistency. The first part of CAP refers to consistency, 
which is, informally, the property that each server returns 
the right response to each request, that is, a response 
that is appropriate to the desired service specification. 
The exact meaning of consistency depends on the type 
of service.

Trivial services do not require any coordination among 
the servers—for example, a service that returns the value 
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it illustrates a general tradeoff in distributed computing: 
the impossibility of guaranteeing both safety and liveness 
in an unreliable distributed system.1-5 Informally, an algo-
rithm is safe if nothing bad ever happens. Consistency as 
defined in CAP is a classic safety property: every response 
sent to a client is correct. By contrast, an algorithm is live 
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Because of this inherent tradeoff, it is necessary to 
sacrifice one of these properties. Accordingly, some sys-
tems guarantee strong consistency and provide best-effort 
availability; others guarantee availability and provide best-
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of the constant π to 100 decimal places. Trivial services do 
not fall within the scope of the theorem.

Weakly consistent services involve some distributed co-
ordination, but each server can make progress on its own. 
As a result, they too do not fall within the scope of CAP and 
hence can avoid sacrificing availability while still provid-
ing some weak consistency guarantees. A distributed Web 
cache is an example of such a service.

Atomic services are defined in terms of atomic opera-
tions, which are described by a sequential specification. A 
sequential specification describes a service in terms of its 
execution on a single, centralized server: the server main-
tains some state, and it processes each request in order, 
updating the state and generating a response. A distributed 
service is atomic if, for every operation, there is a single 
instant between the request and response at which the 
operation appears to occur. From the clients’ perspective, 
it is as if a single, centralized server executes all the opera-
tions according to the sequential specification. 

Complicated services either cannot be specified sequen-
tially or require more intricate coordination, transactional 
semantics, and so on.

Our formulation of CAP focuses on Web services that 
implement a read/write atomic shared memory: the service 
provides its clients with a single (emulated) register, and 
each client can read or write from that register. (Commonly 
used consistency conditions such as sequential or causal 
consistency typically yield similar CAP-like results.)

Availability. The second part of CAP refers to availabil-
ity, which is, informally, the property that each request 
eventually receives a response. A fast response is clearly 
preferable to a slow response, but in the context of the 
theorem, even requiring an eventual response is sufficient 
to create problems. (In most real systems, of course, a 
response that is too late is just as bad as no response at all.)

Partition tolerance. The third part of CAP refers to 
partition tolerance. Unlike the other two requirements, 
partition tolerance is really a statement about the underly-
ing system rather than the service itself: communication 
among the servers is unreliable, and the servers can be 
partitioned into multiple groups that cannot communicate 
with one another. We model a partition-prone system as 
one that is subject to faulty communication: messages can 
be delayed and sometimes lost forever. (Again, in practi-
cal terms, a long-delayed message might as well be lost.) 

Proving CAP
In sum, CAP can be stated as follows: in a network sub-

ject to communication failures, it is impossible for any Web 
service to implement an atomic read/write shared memory 
that guarantees a response to every request.

There is a relatively simple proof of the theorem.6 
Assume the service consists of servers p1, p2, ..., pn

, along 
with an arbitrary set of clients. Consider an execution in 

which the servers are partitioned into two disjoint sets: 
{p1} and {p2, ..., pn

}. Some client sends a read request to 
server p2. Because p1 is in a different component of the 
partition from p2, the system loses every message from p1 
to p2. Now consider the following two cases:

	 1.	 A previous write of value v1 has been requested of p1, 
and p1 has sent an ok response.

	 2.	 A previous write of value v2 has been requested of p1, 
and p1 has sent an ok response. 

No matter how long p2 waits, it cannot distinguish these 
two cases, hence it cannot determine whether to return 
response v1 or v2. Its choice is to either eventually return a 
(possibly wrong) response or to never return a response. 

In fact, if communication is asynchronous—if processes 
have no a priori bound on how long it takes to deliver a 
message—then the same situation can occur even in 
executions in which there are no permanent partitions 

and no messages are lost. In the above scenario, server p2 
eventually must return a response, even if the system is 
partitioned; if the message delay from p1 to p2 is sufficiently 
large that p2 believes the system to be partitioned, then it 
may return an incorrect response despite the lack of parti-
tions. Thus it is even impossible to provide good responses 
when there are no partitions and bad responses only when 
there are partitions. 

THEORETICAL CONTEXT 
The tradeoff between consistency and availability in a 

partition-prone system is an example of the general trade-
off between safety and liveness in an unreliable system. 
This notion that it is impossible for a system to achieve both 
properties has played a key role in distributed computing.

Consistency, availability, and partition tolerance 
A safety property requires that at every point in every 

execution, the property holds. Consistency requirements 
are typically safety properties. For example, to say that an 
algorithm guarantees atomic consistency is to claim that 
in every execution, every response is correct with respect 
to the “prior” operations. 

A liveness property, by contrast, says nothing about 
the state at any specific instant; it requires only that if 
an execution continues for long enough, then eventually 

CAP states that any protocol imple-
menting an atomic read/write register 
cannot guarantee both safety and  
liveness in a system prone to partitions. 
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something desirable happens. In this context, CAP states 
that any protocol implementing an atomic read/write reg-
ister cannot guarantee both safety and liveness in a system 
prone to partitions. 

Agreement is impossible 
Understanding the relationship between safety and liv-

eness properties has been a long-standing challenge in 
distributed computing. The issue achieved widespread 
prominence in 1985 when Michael Fischer, Nancy Lynch, 
and Michael Paterson showed that fault-tolerant agreement 
is impossible in an asynchronous system.3

Their research focused on the problem of consensus, in 

which each process p
i
 begins with an initial value v

i
, and 

the processes all must agree on one of those values. There 
are three requirements for consensus:

•• agreement—every process must output the same 
value;

•• validity—every value output must have been provided 
as the input for some process; and

•• termination—every process must eventually output 
a value.

Agreement and validity are safety properties, while ter-
mination is a liveness property. The impossibility of 
consensus is thus an important example of the inherent 
tradeoff between safety and liveness.

The safety requirements of consensus are more difficult 
to meet than those we have considered with respect to 
CAP: achieving agreement is (provably) harder than simply 
implementing an atomic read/write register. Thus, CAP 
also implies that it is impossible to achieve consensus in a 
system subject to partitions.

Fischer, Lynch, and Paterson did not consider a system 
with partitions; they were concerned with the more benign 
issue of crash failures. Specifically, they assumed that one 
unknown process can cease operation while most of the 
processes in the system continue to communicate reli-
ably. Their surprising conclusion was that consensus is 
impossible in such a system. In fact, for every purported 
consensus protocol that guarantees agreement and valid-
ity, there is some execution in which there are no failures 
and yet the algorithm never terminates. In the case of con-
sensus, safety and liveness are impossible if the system is 
even potentially slightly faulty. 

This result has had significant implications. For ex-
ample, the problem of consensus is at the heart of the 
replicated state machine paradigm, one of the most 
common approaches for building reliable distributed ser-
vices.7-10 This paradigm achieves availability by replicating 
the service across a set of servers. The servers then agree 
on every operation performed by the service. The impos-
sibility of fault-tolerant consensus implies that services 
built according to the replicated state machine paradigm 
cannot achieve both availability and correctness in an 
asynchronous network.

Safety/liveness tradeoff for consensus 
Distributed computing researchers soon began ex-

ploring safety/liveness tradeoffs in more depth. Their 
efforts provide context for analogous questions raised 
by CAP.

Synchrony. Given that safety and liveness are impos-
sible in sufficiently unreliable systems, the first natural 
question to arise was under what conditions it is possible 
to achieve both. Much research has concentrated on net-
work synchrony: What level of synchrony is necessary to 
avoid the inherent tradeoff? What level of network reliabil-
ity is needed to achieve both consistency and availability, 
subject to a given level of faulty behavior? 

A network is said to be synchronous if it satisfies the 
following properties: 

•• every process has a clock, and all the clocks are 
synchronized; 

•• every message is delivered within a fixed and known 
amount of time; and 

•• every process takes steps at a fixed and known rate. 

We can think of such systems as progressing in rounds; 
within each round, each process sends some messages, 
receives all the messages that were sent to it in that round, 
and performs some local computation. 

If a system is wholly synchronous, consensus can be 
achieved—that is, the tradeoff between safety and liveness 
can be wholly avoided. Notably, consensus requires f + 1  
rounds, if up to f servers can crash.11,12 As consensus is 
impossible in an asynchronous system if there is even one 
crash failure, how much synchrony is needed to achieve 
consensus?

Cynthia Dwork and coauthors attempted to answer 
this question by exploring various partial synchrony 
models.13 Most notably, they introduced the idea of even-
tual synchrony: a system can experience periods of both 
synchrony and asynchrony, but as long as it eventually 
stabilizes and maintains synchrony for a sufficiently long 
time, it is possible to achieve consensus. Subsequent re-
search has demonstrated that f + 2 rounds of synchrony 
are adequate.14,15

In the case of consensus, safety and 
liveness are impossible if the system  
is even potentially slightly faulty. 
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There is also a connection between a system’s level of 
synchrony and its crash tolerance. A synchronous system 
can achieve consensus for any number of failures, while 
in an asynchronous system it is impossible to achieve con-
sensus for even one failure. In an eventually synchronous 
system, however, it is possible to achieve consensus only 
if there are < n/2 crash failures, where n is the number 
of servers. If there are ≥ n/2 crash failures, consensus is 
again impossible (due to partitioning, much like in CAP). 
Most practical consensus implementations today are ex-
plicitly or implicitly designed for eventually synchronous 
systems.7,9,16

Another line of research has pursued a different ap-
proach to the question of how much synchrony is needed 
to achieve consensus. Tushar Chandra and colleagues 
introduced the idea of a failure detector that provides suf-
ficient information for processes to achieve consensus in 
an asynchronous crash-prone system.2,17 One example of 
a failure detector is a hello protocol that monitors which 
neighbors in a network are active. Another example is a 
leader election service, which identifies a reliable server to 
act as the leader.

Marcos Aguilera and colleagues pursued a third line of 
research, exploring a specific minimal set of link reliability 
and synchrony assumptions for achieving consensus.18,19

Consistency. A second natural question arising from 
the inherent safety/liveness tradeoff relates to consis-
tency: given that the network is unreliable, what is the 
maximum level of consistency that can be achieved?

In response to this question, Soma Chaudhuri intro-
duced the concept of set agreement.20 Much like consensus, 
each process proposes a value and eventually outputs a 
value that was initially proposed by some process—that 
is, the validity and termination conditions are identical. 
Unlike consensus, however, output values can disagree in 
a limited way. Specifically, for k-set agreement, there can 
be up to k different output values.

This weaker consistency guarantee leads to a sequence 
of problems: 1-set agreement, 2-set agreement, 3-set agree-
ment, ..., n-set agreement. Note that 1-set agreement is 
identical to consensus, and n-set agreement is trivial—that 
is, each process simply outputs its own initial value. Con-
sequently, 1-set agreement is impossible if there is even 
one crash failure, while n-set agreement can tolerate an 
arbitrary number of crash failures.

A seminal series of studies demonstrated that k-set 
agreement can be achieved if and only if there are at 
most k – 1 crash failures.1,4,5 Thus, k-set agreement is the 
“most” agreement achievable in a system with k – 1 fail-
ures that ensures availability. Chaudhuri and colleagues 
related the degree of consistency to the running time: in 
a synchronous system with t failures, at least t k/  + 1 
rounds are necessary and sufficient to achieve k-set 
agreement.21 

PRACTICAL IMPLICATIONS 
To overcome CAP’s negative implications, practitioners 

building and deploying distributed services over unreliable 
networks have traditionally chosen to sacrifice either avail-
ability or consistency. However, alternative approaches 
have emerged in practice that sacrifice both. Some such 
systems balance the required level of availability and con-
sistency. Others segment a larger system into different 
components, each of which can choose a different tradeoff. 
The resulting design often yields a system that responds 
well to most user requests, even under bad network con-
ditions, and also provides high levels of consistency when 
and where needed. 

Best-effort availability 
Perhaps the most common approach to dealing with 

unreliable networks is to design a service that guaran-
tees consistency—that is, correct operation—regardless 
of network behavior. Software architects then optimize 
the service to provide best-effort availability, that is, 
to be as responsive as possible given current network 
conditions. This design makes sense when communica-
tion is typically reliable and timely—for example, when 
all the servers running a service are in the same data- 
center—and partitions or other network anomalies occur 
only rarely.

A recent popular example of this approach is Chubby, 
a coarse-grained lock service and metadata service for 
distributed networks that supports the Google File System, 
BigTable, and other key Google infrastructure elements.7,22 
Google also uses Chubby as a naming service to replace the 
Domain Name System (DNS).

At the heart of Chubby is a distributed database with a 
primary-backup design. The system ensures strong consis-
tency among the servers using a replicated state machine 
protocol, Paxos,9 to maintain synchronized logs. Chubby 
operates effectively as long as no more than half the serv-
ers fail and the network is reliable.

Most of the time, there are no partitions in the system. 
Each Chubby “cell” is deployed in a single datacenter, and 
communication within a cell is typically fast and reliable. 
The primary replica rarely fails, and when it does, chang-
ing to another backup results in only occasional delays. 
Overall, Chubby provides very high availability most of 
the time. 

Practitioners building and deploying 
distributed services over unreliable 
networks have traditionally chosen  
to sacrifice either availability or 
consistency.
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CAP has played an important role in 
defining the design space, and has 
implications for the changing world  
we inhabit today.

Best-effort consistency 
For some applications, sacrificing availability is not an 

option: users require that the application be responsive in 
all situations. Moreover, when the application is deployed 
over a wide area rather than within a datacenter, avail-
ability can degrade rapidly. In such situations, designers 
sacrifice consistency to guarantee a response—preferably 
a fast one—at all times. Consequently, the response might 
not always be correct. The system provides only best-effort 
consistency.

The classic example of this approach is seen in Web 
caches, services that store content such as images and 
video on servers in globally distributed datacenters. When-

ever a user requests a webpage, the system delivers content 
from a nearby Web cache, if it is available; otherwise, it re-
trieves the data from the Web server on which the content 
was originally hosted. 

Such a system guarantees very high availability: the 
proximity of the cache servers to end users ensures that re-
sponses are rapid, and network connectivity issues rarely 
prevent a response. On the other hand, the consistency 
guarantees of Web caching are weaker. When the system 
updates a webpage, it might take some time for the new 
content to propagate to all the cache servers. The caching 
service does its best to provide up-to-date content, but 
there is no assurance that all users accessing a webpage at 
any given time receive the exact same content.

For Akamai and other content delivery service provid-
ers, this tradeoff makes sense. Users viewing Web content 
do not necessarily require strong consistency: there is 
usually little harm if users in different locations view 
slightly different versions of a webpage or if the content 
is a little out of date. On the other hand, Web users have 
little patience—a fast response is critical. In addition, the 
widespread geographical distribution of Web users implies 
the need to sacrifice consistency to achieve sufficient avail-
ability and performance. 

Balancing consistency and availability 
Some systems allow for an adjustable tradeoff between 

consistency and availability. For example, the owner of 
a website may specify how out-of-date the content may 
become: it might be acceptable for some content to be one 
hour out of date, but not one day out of date. A website 
owner who specifies this weaker level of consistency is 

provided in return with a higher level of availability. By 
setting a threshold for out-of-date data, system operators 
can precisely specify the desired CAP tradeoff.

Haifeng Yu and Amin Vahdat explored this approach 
with the TACT (Tunable Availability and Consistency Trade-
offs) toolkit, which enables replicated applications to 
specify the desired level of continuous consistency. A nota-
ble aspect of their system is the ability to update this value 
dynamically, as the application executes.23,24 Consider, for 
example, an airline reservation system. When most of the 
seats on an airplane are available, the system can rely on 
somewhat out-of-date data without overbooking the plane. 
As the plane fills, however, the system requires increas-
ingly accurate data to prevent overbooking. Using TACT, 
the system could request increasing levels of consistency 
as the number of available seats diminishes.

Such a tunable system guarantees neither strong consis-
tency nor continual availability: data can be inconsistent, 
and a major network partition can still render the service 
unavailable. Nevertheless, this type of tradeoff can sig-
nificantly increase the system’s robustness to network 
disruption, before it must compromise availability. 

Segmenting consistency and availability 
Many systems do not have a single uniform require-

ment: some aspects require strong consistency and others 
high availability. For such systems, a natural approach to 
circumventing CAP is to segment the system into compo-
nents that provide different types of guarantees. Doing so 
might again produce a service that overall guarantees nei-
ther consistency nor availability, yet ultimately each part 
of the service provides exactly what is needed.

The system can be partitioned along various dimen-
sions. The precise guarantees that segmentation provides 
are not always clear and are specific to the given applica-
tion and the particular partitioning scheme.

Data partitioning. Different types of data can require 
various levels of consistency and availability. For exam-
ple, an online shopping cart might be highly available, 
responding rapidly to user requests, yet occasionally 
inconsistent, losing a recent update in anomalous cir-
cumstances. An e-commerce site’s product information 
likewise could be somewhat inconsistent: users will toler-
ate slightly out-of-date inventory data. However, checkout, 
billing, and shipping records must be strongly consistent: 
users will be unhappy if a final order does not reflect their 
intended purchase. Different data might require different 
tradeoffs.

Operational partitioning. Different operations may 
require different levels of consistency and availability. 
Consider, for example, a system that guarantees high 
availability for read-only operations, while operations 
that modify the database need not respond during net-
work partitions. For an e-commerce site, a purchase 
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operation must be consistent, while a query operation 
can return out-of-date data. To achieve a good user experi-
ence, Yahoo’s PNUTS (Platform for Nimble Universal Table 
Storage) system provides such tradeoffs for different read 
and write operations.25

Functional partitioning. Many services can be divided 
into subservices with their own requirements. For exam-
ple, an application might use a service such as Chubby for 
coarse-grained locks and distributed coordination (strong 
consistency), a service such as DNS to handle naming 
(relatively weak consistency but high availability), and a 
third subservice with a different consistency/availability 
tradeoff for content distribution.

User partitioning. Network partitions, and poor net-
work performance in general, typically correlate with 
geographic distance: users far away from servers are more 
likely to experience poor performance. Thus, a service 
like Craigslist might elect to divide its servers among two 
different datacenters in the US—one on the east coast and 
one on the west coast. The service would, for example, 
rely on the west coast datacenter to provide high availabil-
ity to users from California cities; moreover, as it stores 
and maintains the California data within a single data-
center, the system can more easily achieve consistency 
among the west coast servers. The same holds true for 
east coast users that rely on the east coast datacenter. (On 
the other hand, New York users inquiring about Craigslist 
ads in San Francisco might experience weaker perfor-
mance under this design.) A social networking site might 
similarly try to partition its users to ensure high avail-
ability among groups of friends.

Hierarchical partitioning. Some applications are orga-
nized hierarchically, with partitioning occurring multiple 
times along different dimensions. At the top level, an 
application encompasses the whole world or the entire 
database; subsequent levels of the hierarchy partition 
the world or database into smaller parts. At each level of 
the hierarchy, the system might provide a different level 
of performance: better availability toward the leaves, less 
consistency toward the roots. For example, in descending 
a geographically organized hierarchy, CAP’s limitations 
become less onerous as the relevant servers become better 
connected. 

S ince the CAP theorem was first formulated over 
a decade ago, the networked world has changed 
significantly, creating new tradeoffs to explore and 

new challenges to overcome. The theorem has played 
an important role in defining the design space, and has 
implications for the changing world we inhabit today. The 
same safety/liveness tradeoffs raised by CAP arise when 
considering issues of scalability and network security, and 
when developing mobile and wireless networks. 

Increasingly, systems must be scalable to accommodate 
future growth as well as today’s needs. Intuitively, a system 
is scalable if it can use new resources efficiently to handle 
more load. CAP hints at a tradeoff between scalability and 
consistency (and latency): maintaining consistency among 
more resources requires more communication, which is 
subject to safety/liveness tradeoffs. This might explain why 
even within a datacenter, where partitions rarely occur, it 
is difficult to efficiently scale strongly consistent protocols 
like Paxos.

Severe attacks on networks are on the rise. For example, 
denial-of-service attacks are becoming a near-continuous 
threat to everyday network operations. These sorts of 
attacks create safety and liveness issues. CAP, however, 
addresses network partitions, and a DoS attack cannot 
simply be modeled as a network partition. Similarly, mali-
cious users are increasingly hacking servers and otherwise 
disrupting major Internet services. Tolerating such attacks 
requires a new understanding of consistency/availability 
tradeoffs.

CAP was initially intended to address wide-area Internet 
services. Today, however, mobile devices initiate a signifi-
cant and growing percentage of Internet traffic. Many of 
the same CAP tradeoffs also apply to mobile networks and 
are even harder to overcome: wireless communication is 
notoriously unreliable, and message latencies can vary 
considerably.

In addition, many of the applications deployed in wire-
less networks have different properties than traditional 
Internet services like search engines and e-commerce 
websites. For example, they are heavily influenced by  
geography and proximity; they are organized around 
social interactions; and privacy considerations are more 
immediate. By reexamining CAP in the context of wireless 
networks, we might better understand the unique tradeoffs 
that occur in these types of scenarios. 
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