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Abstract

Causal memory is a weakly consistent memory in which
reads are required to return the value of the most re-
cent write based on the causal ordering of read and
write operations. We present a simple owner protocol
for implementing a causal distributed shared memory
(DSM) and argue that our implementation is more effi-
cient than comparable coherent DSM implementations.
Moreover, we show that writing programs for causal
memory is no more difficult than writing programs for
atomic shared memory. We believe that causal memory
is an attractive target architecture for DSM systems.

1 Introduction

Distributed shared memory is an attractive abstraction
because it allows processes uniform access to local and
remote information. This uniformity of access simplifies
programming, eliminating the need for separate mech-
anisms to access local state and remote state. How-
ever, consistent distributed shared memory (DSM) can
be difficult to implement efficiently. Most DSM imple-
mentations to date use variants of multiprocessor cache
consistency algorithms that perform poorly in high la-
tency distributed systems. Weakly consistent memories
allow implementations better suited to the high laten-
cies encountered in distributed systems.

Traditionally, a shared memory is correct if reads
return the value of the “most recent write” to the loca-
tion being read. Atomic memory satisfies this “register
property” by regarding reads and writes as operation
intervals on a global time line and requiring that op-
erations “take effect” at some point within the oper-
ation interval [17]. Under this model, each operation
corresponds to a distinct point (operations may not
“take effect” simultaneously) on the global time line
and, for any read operation, the most recent write is
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well-defined. While the order of overlapping writes may
not be determined until a subsequent read operation
“chooses” which write is the most recent, the resulting
execution must still obey the register property. Sequen-
tial consistency [12] is a weakening of atomic memory
that relaxes the requirement that operations take ef-
fect during their operation intervals. Several researchers
[20, 2, 6] have sought to exploit the considerable flex-
ibility provided by sequential consistency over atomic
memory yet the requirement that sequentially consis-
tent executions appear “as if” they obey the register
property is severely restrictive.

Existing implementations of consistent (atomic)
DSM [15, 18] require frequent, expensive global syn-
chronization leading to inefficiency and problems of
scale. Researchers in the architecture community have
also begun to question the wisdom of always maintain-
ing strong consistency [1, 14, 9, 7]. Recent work [10]
has suggested that the principled weakening of consis-
tency may solve problems of latency and scale and still
provide a reasonable programming model.

We explore a type of weakly consistent memory in-
troduced in [10] that we call causal memory. (A for-
mal study of causal memory is presented in [3] where
the memory discussed in this paper is called strict
causal memory.) Informally, causal memory requires
that reads return values consistent with all causally re-
lated reads and writes of that same location. We say
that “reads respect the order of causally related writes.”
Causal memory does not require all writes of a sin-
gle location to be totally ordered; several processors
may write a location concurrently and independently,
without synchronizing. Subsequent readers may dis-
agree on the relative ordering of these concurrent writes.
Causal memory is based on Lamport’s concept of po-
tential causality [11]. We introduce a similar notion of
causality based on reads and writes in a shared memory
environment. Causal memory is also closely related to
the ISIS causal broadcast introduced in [5]. A notion
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similar to our causal memory was introduced indepen-
dently by Scheurich in his 1989 thesis [19]. He identifies
causal correctness as a property enjoyed by various re-
strictions of sequentially consistent memory, although

he does not consider a causally correct memory inter- .

esting in its own right.
Our goals in this paper are to show that:

o Causal memory can be efficiently implemented in
a DSM environment. We demonstrate an im-
plementation algorithm that requires significantly
less synchronization than comparable implemen-
tations of strongly consistent memory.

Causal memory provides a reasonable and viable
target architecture for programming distributed
applications. We demonstrate solutions on causal
memory to the dictionary problem, and program
an iterative linear equation solver.

Causal DSM potentially provides improved over-
all system performance. Since similar code may
be used to program applications on both atomic
and causal memories, and since implementations
of causal memory are more efficient than imple-
mentations of strongly consistent memory, we ar-
gue that programming with causal memory leads
to improved performance.

Section 2 defines causal memory and its implemen-
tation is given in Section 3. Section 4 discusses pro-
gramming with causal memory. In Section 5 we offer
concluding remarks.

2 Causal Memory

Consider a system of n processes that interact by shar-
ing causal memory. A process is defined by the sequence
of operations it performs. An operation o = a(z)v acts
on location ¢ with value v. A write operation w(z)v as-
sociates the value v with location z. A read operation
#(z)v reports on this association. When necessary we
include a subscript on operations to identify the pro-
cess performing the operation. Thus, wa(z)1 is a write
of z by process P3. To simplify notation, we assume all
writes are unique (easily implemented by associating a
timestamp with writes). Thus, each read can be iden-
tified with the unique write that it “reads from.” Note
that several reads (possibly by distinct processes) may
read from the same write.

We relate reads and writes using the potential
causality relation. Two simple rules capture the causal-
ity relation (denoted —). First, if 0 and o’ are two suc-
cessive operations by the same process, then o — o
and we say that o causally precedes o' or that o hap-
pens before o/. Second, if the read operation o, reads
from the write operation o, then o, — or. (Recall that
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P1:
Py

w(z)1 w(y)2 r(y)2 r(z)1
w(2)1 r(y)2 r(z)1

Figure 1: Example of Causal Relations

we require all writes to be unique.) Thus causality is
a combination of the program order relation and the
reads-from relation on operations. Finally, we assume
that all locations are initialized by writes of a distin-
guished value that precede all operations in any process
sequence.

The transitive closure of — (denoted =) is also a
useful notion. If o transitively precedes o' (o — o')
then there is some sequence of operations o1,...,0k
where 0; — 0;41 for all integers 0 < 7 < k and where
o = o1 and o = o;. Two operations not related by
2, are said to be concurrent. In the example exe-
cution in Figure 1 the writes of  and z are concur-
rent and w(z)l 5 r(y)2. Notice that a read may
establish causality by relating a read and write that
are otherwise concurrent or a read may simply confirm
causality by reading from a write already related by
program order. Thus, ra(y)2 establishes causality by
reading from w(y)2 while r;(z)1 confirms the ordering
w(z)1 2 r1(z)1 already established by program order.

Informally, causal memory obeys the register prop-
erty so that reads return the value of the “most recent
write” where “most recent” is determined by causality.
However, since 2, may only partially order writes on
causal memory (writes on atomic or sequentially con-
sistent memory are totally ordered) there may be no
single most recent write. Thus, causal reads routinely
select their return value from among a. set of correct val-
ues. Call the values in this set live for read operation o.
Then (o) denotes the values live for read operation o.
Values that causally precede the values (writes) in this
set are said to have been overwritten.

When defining «(o) for read operation o = r(z)v by
process P;, we will consider all the causal relationships
in the execution ezcept the reads-from ordering estab-
lished by o itself. The write o/ = w(z)v may causally
precede, follow, or be concurrent with o. Writes that
causally follow o are never live for o while writes con-
current with o are always live for o. Writes that pre-
cede o may be live for o if they have not been over-
written. If two related writes transitively precede o
(w(z)v = w(z)v’ = o) then clearly the earlier write
of v is overwritten by the write of v'. However, an in-
tervening read operation r(z)v’ serves notice that v has
been overwritten and is sufficient to eliminate v from
a(o) as well.

Definition 1 (Live Values) Given o = r(z) and o’ =
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Py w(z)2 w(y)2 w(y)3 r(2)5 w(z)d
Py w(z)l r(y)3 w(z)7 w(z)5 r(z)4 r(z)9
P3: ()5 w(z)9

Figure 2: A Correct Execution on Causal Memory
w(z)v, the value v is live for o (v € a(0)) if either:

* *
1. o' is concurrent! with o. That is, o' />0 4 0.

2. Or, o precedes o with no intervening read or write
. . * .
of x with value v'. That is, o' = o but there is
(- ! wh pxonx da=
no o' = a(z)v' where o’ = o S oanda=r or
a=w.

Definition 2 (Causal Memory) An ezecution on
causal memory is correct if the value returned by each
read operation in the ezecution is live for that read.
That is, for each o = r(z)v, v € a(0).

The three process sequences in Figure 2 depict a
correct execution on causal memory since each read re-
turns a live value (a value in a(0) as defined above). In
this and all following examples we assume initial writes
to all locations of the value 0. Consider the read of z
by P;. To determine if this is a correct read we must
determine the causal relationships between r;(z)5 and
all writes of z in the execution.

By inspecting Figure 2 we can see that r1(2)5 is con-
current with wz(2)5. Since w3(2)5 is the only write to
z in this execution, other than the initial write of 0,
we conclude that a(r,(2)5) = {0,5}, and that the read
r1(2)5 is correct. r3(z)5 is shown correct by the same
argument. By a similar argument we conclude that
a(r2(y)3) = {0, 2,3} and that the read r2(y)3 is likewise
correct. Finally, we consider the two reads of z by P,.
Both w1(x)2 and w2(z)1 (and the initial write of 0) are
overwritten by Py’s write of 7 to z and so do not appear
in a(ra(z)4). However, both wy(z)4 and wz(2)9 remain
concurrent to rp(z)4. Thus, a(ry(z)4) = {4,7,9} and
r2(z)4 is correct. Py’s read rp(z)4 serves notice that
Py’s earlier write to z has now been overwritten. Thus
Py’s second read of  may correctly return only 4 or 9.
Since it returns 9, the entire execution is shown correct
on causal memory.

So far we have required only that correct reads of
causal memory select some value in the set (o). It is

1This condition illuminates our exclusion of the reads-from re-
lation established by o itself when defining a(0). If this reads-from
relation is also considered then o = 7(z)v neverreads from a write
concurrent with o since a read causally follows its corresponding
write by definition.
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Py w(z)5 w(y)3
Py: w(z)2 r(y)3 r(z)5 w(z)4
P3: r(2)4 r(z)2

Figure 3: Causal Broadcasting is Not Causal Memory

possible to further refine the definition of causal mem-
ory and specify a policy for selecting among alternatives
in &. Such a policy can be used formally to guarantee
various liveness and fairness properties of causal mem-
ory. Also, in Section 4, we will see that allowing the
programmer to select among such policies can signifi-
cantly simplify programming of some applications.

As we have said, causal memory is closely related to
the ISIS causal broadcast and, thereby, to the notion
of causally ordered messages. But causal memory is
more than a collection of “locations” updated by causal
broadcasts. There are significant differences in the two
models.

One way to relate the two models is to assume that
each processor has a copy of the memory (a cache)
and writes are sent as broadcast messages to all pro-
cessors. When a message arrives at a processor, it up-
dates its memory by storing the value contained in the
message into the appropriate location. A read by the
processor returns the value in its memory. It may seem
that when the message delivery order preserves causal-
ity (for example by using the causal broadcast protocol
of ISIS) the values returned by read operations will sat-
isfy the requirements of causal memory. This, however,
is not true. The execution in Figure 3 is not allowed by
causal memory but is possible when writes are treated
as causal broadcasts. Since w(z)5 and w(z)2 are con-
current, their messages may arrive in different orders at
P, and Ps. If w(x)b arrives at P, after w(z)2 the values
in Figure 3 will be returned, but 2 is not in a(r(z)2).

3 Implementation

In this section we show how to implement a causal DSM
using only local memory accesses and reliable, ordered
message passing between any two processors. We dis-
cuss several enhancements to the basic algorithm in the
full paper [4].

3.1 The Basic Algorithm

The shared causal memory is partitioned among the
processors in the system. The locations assigned to a
processor are owned by that processor. Each processor
P; has a local memory M; indexed by location names
(addresses) in the causal memory namespace A'. The
locations owned by a processor are always stored in the
local memory of that processor so that, if ¢ = owner(z)

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on September 23,2024 at 02:49:26 UTC from IEEE Xplore. Restrictions apply.



then M;[z] contains the current value of z. The remain-
ing locations in a processor’s local memory are used to
cache copies of locations owned by other processors.
We use the distinguished value L to indicate that a
node does not possess a cached copy of a location. If
M;[z] = L then z is invalid (not cached) at P;. Also,
we say that assigning L to a location (M;[z] := L) in-
validates that location at P;. The locations owned by
a processor can never be invalidated by that processor.
C; is the set of locations currently cached by processor
P,, that is, locations that are not owned by P; and that
are not invalid in M;. Our implementation maintains
correctness by invalidating cached copies that might vi-
olate causal memory correctness if read.

Attempts to read a location not locally owned nor
cached (a read miss) generate a message to the owner
requesting a current copy. The requesting processor
blocks until a reply is received, caches the copy received,
and then completes the read. Similarly, writes to a
location not owned by the writer generate a message to
the owner, requesting that the write be certified. The
writing processor blocks until a reply is received and
the write is certified. Essentially, all such writes are
completed cooperatively between the writing processor
and the owner.

Recall that causal memory correctness is intimately
related to causality. A simple vector timestamp pro-
tocol [16] may be used to capture precisely the evolv-
ing partial ordering of events in a distributed system,
and thereby, causality. Each processor in the system
maintains a separate vector timestamp VT; that may
be incremented, updated, and compared. Processor F;
increments VT; by adding one to the ith component,
VTi[i]. update(VT,VT') returns the component-wise
max of the two vectors. Finally, we may compare vec-
tor timestamps. VT < VTV if Vi : VT[] < VT'[§] and
35 : VT[j] < VT'[j]. On every write attempt, the writ-
ing processor increments its vector timestamp and as-
sociates the resulting vector time, called a writestamp,
with the value written. Thus each location z in a pro-
cessor’s local memory M; contains a value-writestamp
pair M;[z] = (v, VT). All writes by a processor are to-
tally ordered by these writestamps and all writestamps
ever generated in the system are unique. Two writes not
ordered by their associated timestamps are concurrent.
When a processor introduces a value into its cache, it
updates its vector timestamp with the writestamp as-
sociated with the value being introduced.

Identifying precisely the values that may violate cor-
rectness after a read or write of causal memory requires
more overhead than we are willing to pay in our simple
owner protocol. (See Hutto et al. [3].) Instead, each
time a “new” value is introduced into local memory by a

2n

ri(z)v

if M,[.‘C] = 1
send [READ, z] to owner(z)
receive [R_REPLY ,z,v', VT'] from owner(z)
VT; := update(VT;, VT')
M;lz] := (v, VT')
Yy € C; : Mi[y). VT < VT’

My =1
v = M;[z].value

wi(z)v =
VT; := increment(VT;)
if owner(z) # 1
send [WRITE, z,v, VT;] to owner(z)
receive [W_.REPLY ,z,v, VT'] from owner(z)
VT; := update(VT;, VT')
M;fz] := (v, VTy)

[READ,z] ::
receive [READ, z] from j
send [R.REPLY ,z, M;[z).value, M;[z]. VT] to j

[WRITE, z,v, VT} ::
receive [WRITE, z,v, VT] from j
VT; = update(VT;, VT)
M;[z] := (v, VTy)
Vy € C;: Mi[y). VT < VT;
Mily) == L
send [W.REPLY ,z,v, VT}] to j

discard ::
My =1:3yeC;
Figure 4: A Simple Owner Protocol

read or write, we invalidate all cached values that could
potentially participate in a violation of causality; that is
all cached values that are “older” (via the causality re-
lation) than the value being introduced. This approach
may invalidate more cached values than strictly nec-
essary but it requires little bookkeeping overhead and
ensures correctness. The algorithm is shown in Fig-
ure 4. Five procedures are presented. The first two are
executed whenever P; performs a read or write. The
next two are executed by P; on receipt of READ and
WRITE requests for locations owned by P;. The final
operation, discard, may be performed by P; under a va-
riety of circumstances described below. Each operation
must be executed atomically and owners must fairly al-
ternate between issuing reads and writes and respond-
ing to READ and WRITE messages from other pro-
cessors. Notice carefully the handling of writestamps
of locations not locally owned. The writer increments
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P12
Pz!

r(y)0 w(z)1 r(y)0
r(z)0 w(y)1l r(z)0

Figure 5: A Weakly Consistent Execution

the local timestamp and sends this to the owner, along
with the value being written. The owner’s local vec-
tor timestamp is then updated based on the incoming
vector timestamp. The owner’s updated timestamp is
finally sent back to the initiating writer who performs
a second update operation. Thus each non local write
involves an increment and two updates of the associated
writestamp.

Although our implementation may generate more
invalidations than necessary, it still admits weakly con-
sistent executions, not allowed by strongly consistent
memories. The weakly consistent execution in Figure 5
is allowed both by causal memory correctness and by
our implementation if P; is the owner of z and Ps is
the owner of y.

Finally, notice that our implementation includes a
simple discard action. discard may be used as part of
a replacement policy to make room for new values to
be cached. Occasional execution of discard can also be
used to ensure eventual communication and to provide
liveness. Without discard two processors that initially
cache all locations and only write locations owned by
them need never communicate.

3.2 Correctness

Informally, our implementation maintains correctness
by invalidating any locally cached values that could
cause a violation of correctness if read. Since a cached
value can be read anytime, our algorithm invalidates
values that can potentially violate correctness each time
a new value is introduced into the cache. Owners
also perform invalidations when servicing write requests
since this amounts to a potential causal interaction be-
tween the writing process and the owner.

Two observations lead to the correctness of our im-
plementation. First, violations of causal memory cor-
rectness are always related to violations of causality. A
read of & by P; returning v can only violate correct-
ness if P; “knows” of some other value v' whose read or
write causally follows the write of v. Second, a read of
z by P; resulting in a request to the owner (a remote
read) can never violate correctness since the owner is
guaranteed to return a value that causally follows any
value of z that P; could previously have seen. Thus,
a simple strategy to maintain correctness is to force a
request to the owner on every read. This strategy re-
sults in a memory that satisfies atomic correctness, not
Jjust causal correctness, but we lose all the benefits of
caching. A better strategy, the one used by our imple-
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mentation, is to allow a process P; to read cached val-
ues that are concurrent with or that causally follow the
value most recently introduced into the cache. Reads
of any other value (not locally owned nor cached) must
generate a read request to the owner. Note that subse-
quent remote reads might introduce values that causally
precede all other cached values so this strategy allows
the cache to contain values with a wide range of writes-
tamps. See [4] for a detailed proof of the algorithm.
The basic implementation algorithm can be im-
proved in several ways. These include scaling the unit
of sharing to a page, eliminating unnecessary invalida-
tions, and reducing the blocking of processors [4].

4 Programming

Causal memory can be easily and efficiently pro-
grammed. We show a synchronous iterative linear equa-
tion solver that works correctly on atomic memory and
show that it works on causal memory as well. A simple
message counting argument suggests that causal mem-
ory provides improved performance for this application.
Next we consider the dictionary problem. This appli-
cation has a solution on causal memory very similar to
the atomic memory solution. However, a particularly
elegant solution exists on causal memory when the pro-
grammer is allowed to specify a procedure for resolving
concurrent writes.

4.1 Linear Solver

Very large systems of linear equations often arise in
many scientific and engineering applications. Li [15]
investigated such an application and found that good
speedups can be obtained even on atomic DSMs. We
believe that even better performance can be obtained
on causal memory.

Consider a parallel iterative algorithm that solves
Az b. We use :cf'“ to represent the value of
the ith component of z in phase k + 1. zf*! can
be computed using the following equation: zf“ =

(bi -5 s Z?=i+1 a; ; -’Uk>/ Note that

i=1 a; ; I] i ag .
A and b are inputs and remain constant but that com-
puting zf*! requires access to all z¥ (i # j) from the
previous iteration.

A parallel implementation of the iterative method
partitions the tasks of computing each new z; among
available processes. At the beginning of each iteration,
a process reads the results of the previous iteration from
the shared global vector z and computes and stores the
new z; in a private local variable ¢;. Since processes
may proceed at different rates, a synchronous imple-
mentation requires processes to synchronize twice per
iteration. Before beginning phase k + 1, each process
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COORDINATOR WORKER;

while (—~done)

wait (Vi complete;)

while (—~done)
t; = (bi -
complete; =T
wait (—~complete;)
z; =1
changed; :=T
wait (—changed;)

i-1

PR

Vi complete; :== F

wait (Vi changed;)

if (converged())
done :=T

Vi changed; := F

Figure 6: Synchronous Iterative Linear Solver

waits until all results from the previous phase have been
copied to the global vector z. Then, before copying the
newly computed value ¢; to global z;, each process waits
until all other processes have completed computation
of their new ¢; (allowing the old &; to be overwritten).
Special synchronization variables such as semaphores
or event counts may be used on causal memory but we
prefer a simpler approach, using causal boolean shared
variables (flags) and a central process to coordinate the
remaining worker processes.

Figure 6 shows the solver. All booleans are initially
False and “wait ( B )” means “while (—~B) skip”.
We assume n worker processes, one for each vector ele-
ment. The code is easily modified so that each process
computes a set of elements. As described previously,
each worker process begins by assuming access to the
previous (or initial) values in the global vector z and
proceeds to compute and store the new value in the lo-
cal variable t;. The worker notifies the coordinator by
setting complete; true (T') and then waits for the co-
ordinator to indicate that all processes have completed
by resetting complete; false (F). Once so notified, the
worker copies the new value t; to the global z; and goes
through a similar handshake before resuming the next
phase of computation or terminating.

We claim the code in Figure 6 correctly solves the
system Az = b on both atomic and causal memory.
Notice that the xz;, and the handshake bits (complete;
and changed;) are the only shared global variables,
and hence, the only locations that may behave non-
atomically. We consider a read of some z; (i # j) by
P; in phase k and show that the only value that may
be correctly returned is the phase k — 1 write to z; by
P;. In other words, values from all earlier iterations
are overwritten and causal memory behaves like atomic
memory in this instance. Following our notation for
z¥, we use superscripts on read and write operations
to denote the phase in which the operation was per-
formed. For example, wf(z;)v denotes a write of a; by
P, in phase k. (A process subscript ‘c’ denotes a read or
write by the coordinator.) Consider the causal relations
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established between P;’s write of z; in phase k —1 and
Pi’s read of z; in phase k by the interactions between
two worker processes (¢ and j) and the coordinator.

(1)
)
3
(4)
)

Above, (1) holds because the two writes are consecu-
tive operations of P;. (2) holds because the coordinator
eventually notices that P; has copied #; to z;. (3) is the
key to the argument and holds because the coordinator
must read changed true from all workers (j in partic-
ular) before setting changed false for all workers (i in
particular) and initiating the next phase. (4) holds be-
cause P; must eventually see changed; false and begin
the next phase. At the beginning of phase k, P; reads
all components of z (except ;) and, in particular, z;,
showing (5) to hold. Taken together (1)-(5) imply that
w;-‘_l(mj)v = r¥(z;)v. Since we assumed an arbitrary
i and j this argument shows that all reads of z in the
computation return the value computed in the previous
iteration, the same value returned when the computa-
tion is executed on atomic memory. A similar argument
holds for the handshake bits. The synchronous iterative
algorithm is correct but the required synchronization is
costly. It is possible to eliminate the synchronization
entirely by using an asynchronous algorithm [4].

Programming on causal memory appears to be re-
markably similar to programming on atomic memory,
identical in fact, for the synchronous solver. To demon-
strate execution on causal memory delivers superior
performance we compare a causal and atomic DSM,
both running the linear solver. We assume a compara-
ble owner protocol for atomic memory where locations
(pages) are stored at the owner and cached at other
nodes. An atomic write requires that all cached copies
in the system be invalidated. (In Li [15], a representa-
tive atomic DSM, a read set is maintained by the owner
and invalidation messages are sent to all nodes in the
read set.) In comparison, a causal write requires at
most a message exchange with the owner.

A simple message counting argument shows the
advantage of causal memory when running the syn-
chronous linear solver. Assume that P; owns z; and
the handshake bits complete; and changed;.2  (For
simplicity assume each node in the system runs a sin-
gle process. Node i runs P;.) First consider the causal
memory implementation. P; begins phase k with the

wh(zj)v — w]’-“l(changedj)T

wy ~(changed;)T — ri=(changed;)T
rE=1(changed;)T = wk~'(changed;)F
wk=1(changed;)F — rf~(changed,)F
r¥=Y(changed;)F — rk(z;)v

2 A simple enhancement to the basic algorithm can be used to
avoid invalidations of A and b [4].
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read r¥(changed;)F. When P; introduces this value,
written by the coordinator, into its cache, all cached
z; (j # i) are invalidated. Therefore, P; must issue
read requests to all other processors when reading z;
(j # ©). This results in 2(n — 1) messages (n — 1 re-
quests and n — 1 replies). After this, P; and the coordi-
nator communicate through the handshake bits owned
by P;, complete; and changed;. Since each bit is writ-
ten twice, a total of eight messages will be necessary.
Thus, a total of 2n + 6 messages per processor per it-
eration are needed on causal memory. Now consider
the same execution on atomic memory. The same num-
ber of messages are generated on atomic memory for
reading the z; and synchronizing with the coordinator
(2(n—1)+8). However, when an owner writes z; at the
end of a phase, atomic memory requires that all cached
copies be invalidated. Since every process other than
P; has a copy of z;, this results in n — 1 messages per
processor, a cost not incurred by causal memory. Thus
each phase of the synchronous linear solver requires at
least 3n + 5 messages per processor when executed on
atomic memory compared to 2n + 6 when executed on
causal memory. This represents a substantial savings
and causal memory will lead to performance gains be-
cause the communication overhead is reduced.

4.2 Distributed Dictionary

Consider an association table with distinct keys main-
tained cooperatively by a collection of processes. Simple
tnsert and delete operations are provided along with a
lookup operation that reports if a value has been in-
serted but not yet deleted. The dictionary problem 8]
is to implement such a table without forcing processes
to synchronize their operations. The correctness con-
dition only requires that a process sees an item in the
dictionary iff the item has been previously inserted and
not deleted according to the operations that have been
executed according to its view. A liveness condition
requires that all views must eventually converge and
attain consistency in the absence of further inserts and
deletes. The dictionary problem was originally posed
for an unreliable, asynchronous message environment.
In such an environment, the view of a process P; in-
cludes operations executed by it as well as the oper-
ations in the view of another process P; at the time
P; sent message m, where m is the most recently sent
message of P; that has been received by P;. In a shared
memory environment, any operation in P;’s view when
P; writes a value to z is also considered to be in P;’s
view after P; reads the value of = written by P;.

An atomic shared memory solution that maintains a
single common copy of the dictionary is not interesting
because the completion of a write operation of a process
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will force its result to be in the view of all processes
even when they do not communicate with the writer
process. Although this is not incorrect, the weaker cor-
rectness requirement is not exploited to provide effi-
cient implementation of the dictionary (atomic writes
may require global synchronization). In [13], Lanin and
Shasha present two algorithms for a wait-free general-
ization of the dictionary problem in a shared-memory
environment which indicate that correct solutions to the
problem are complex even with stronger memory con-
sistency in a shared memory environment.

We accept two easily maintained restrictions which
were also assumed in Fischer [8]: (R1) Each item in-
serted is unique; and (R2) Delete requests follow their
corresponding insert requests. The dictionary is main-
tained in a two-dimensional array dict with n rows (one
per process) and m columns. We use the distinguished
value A to indicate that a location is “free” and that
the previously held value has been deleted. Process P,
responds to insert;(z) by finding a free location in row ¢
of dict and writing the new item there. By partitioning
the dictionary in this way we avoid the need for syn-
chronization when processes insert items. (We assume
that m is sufficiently large to hold all items inserted by
a process.) P; responds to lookup;(z) by systematically
scanning all rows of dict and returning true if z is found.
This ensures the knowledge monotonicity property de-
scribed below. Finally, a process responds to delete;(x)
by scanning the entire array for z and writing X into the
location containing z if found. Notice that a process P;
may need to delete items inserted by some other process
P;. Thus a write by P; inserting a new item into a lo-
cation may be concurrent with other processes writing
A (deleting) to that location but conflicting writes may
never result from concurrent inserts since only process
P; may write into row ¢ of dict.

Our solution requires no synchronization around
deletes even though processes (other than P;) may write
A to a location concurrent with P;’s attempt to write
a new value to the same location. Our solution guar-
antees correctness by requiring simply that P; owns all
locations in row ¢ of the dictionary and that writes by
the owner are always favored when resolving concurrent
writes.

The correctness of the algorithm follows easily.
Causal memory guarantees the view property. Clearly,
each process observes its operations immediately. When
P; reads a value written by P; (a lookup operation re-
turns a value inserted by P; or P; reads a A value writ-
ten by P;), it will also read values installed by insert or
delete operations that are in the view of P;. Thus, the
solution to the dictionary problem possesses the knowl-
edge monotonicily property: after each communication,
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receiving (reading) processes know everything about the
dictionary known by the writing process at the write op-
eration. The only remaining case to consider is when
a delete by some other processor (say P;) is concurrent
with some insert by P;. This can only happen when P;
inserts a new item y in a location previously holding
another value (say z). P; has seen the previous value z
and the delete of z and has inserted a new value y. A
concurrent delete occurs when P;j reads z but not the
delete of z and tries, in turn, to delete . In fact, it is
possible for the delete of = by P; to be concurrent with
a long string of inserts and deletes acting on the same
location. However, when P;’s delete is finally processed
by P;, it will be concurrent with the current value of the
location. Since that value was written by P; and since
our resolution strategy favors writes by the owner, the
delete will be rejected and the dictionary remains cor-
rect.

5 Concluding Remarks

We have argued that causal memory is better suited
to DSM environments than traditional memory consis-
tency because of the potential global synchronization re-
quired by traditional consistency when write operations
are executed. We have shown that a causal DSM can
be implemented efficiently and can be used to program
a variety of applications. Our implementation allows
several processors to cache a given location (page) and
read and write operations never require communication
with more than a single processor (the owner). Several
applications written for atomic memory run without
modification on causal memory, showing the viability
of programming causal memory. We are investigating
variants of causal memory in [3] and plan to implement
a variant of the algorithm presented in this paper under
the Clouds distributed operating system.
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