
Lecture notes for: “The science of brute force”

Lindsey Kuper

September 30, 2019

These are lecture notes to accompany Marijn J. H. Heule and Oliver
Kullmann, “The science of brute force” (CACM 2017). See https:
//decomposition.al/CSE290Q-2019-09/readings.html for the full collection
of notes.

Agenda

• Motivating problem #1: Pythagorean triples problem
• Why we care
• Motivating problem #2: Boolean Schur triples problem
• SAT solving terminology
• Solver internals: paradigms of SAT solving, CDCL, BCP
• Illustrating CDCL and BCP: back to Boolean Schur Triples
• Who watches the watchmen?

Welcome to CSE290Q

So, I could have just gone right to the Kroening and Strichman textbook, but
I decided to have us start by reading this “Science of Brute Force” article
because I thought that might be a little more fun and less dry than the text-
book — the article has some colorful language (like “A mathematician using
‘brute force’ is a kind of barbaric monster, is she not?”) Maybe you found it
fun, maybe you didn’t.

This article also introduces a few concepts that we’ll be spending time in
the next few weeks talking about in much more detail. And it does that by

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html

setting up a math problem and then discussing, at least at a high level, the
techniques by which a SAT solver would solve that problem. I think this is
instructive and so we’ll actually walk through that math problem today.

We won’t really be talking about the last third or so of the article:

• Details of “solutions-preserving modulo x”
• The Ramsey theory stuff
• Philosophical musings about “alien truths”

But I might have time to talk about that stuff some more on Wednesday.

By the way, this course is mostly about SMT solving, right? Why did I have
us start out reading an article about SAT? Well, SAT solving is at the heart
of SMT solving, as we’ll see. Or you could also say that SAT solving is SMT
solving; it’s just the degenerate case where the theory, “T”, is the boring
default one. More about that in the coming weeks.

Motivating problem #1: Pythagorean triples problem

Consider all partitions of the set of natural numbers into finitely many parts.
(At least one part has to be infinite, then.)

The question: does at least one part contain a Pythagorean triple, that is,
numbers 𝑎, 𝑏, 𝑐 such that 𝑎2 + 𝑏2 = 𝑐2?

For instance, say we partition the natural numbers into just two parts: odd
numbers and even numbers.

It turns out that the square of an odd number is always odd (since (2𝑘 +
1)(2𝑘 + 1) = 4𝑘2 + 4𝑘 + 1). But adding two odd numbers will produce
an even number. So there can’t be a Pythagorean triple in the odd partition.
But the even partition does have one: 62 + 82 = 102.

2

Simplified problem

Well, that was one way to split up the set of natural numbers into two parts.
What about other ways of splitting into two parts? Is there always going to
be a Pythagorean triple in at least one of the parts?

They show that the answer is yes. This is the “Boolean Pythagorean
triples” problem. (If it were “three parts” that would be the “three-valued
Pythagorean triples” problem.)

It suffices to show the existence of a subset of the natural numbers such
that any partition of that subset into two parts has one part containing a
Pythagorean triple.

Consider only subsets {1, ..., 𝑛} for some 𝑛. It turns out (via a brute force
proof using a SAT solver) that the smallest such subset for which the prop-
erty is true is {1, 2, 3, ..., 7825}.
How many ways are there to partition the set {1, 2, 3, ..., 7825} into two
parts?

• 1 can go in set 1 or set 2 (2 ways)
• 2 can go in set 1 or set 2 (4 ways)
• …
• 7825 can go in set 1 or set 2 (27825 ways)

So there are 27825 ways to partition the set {1, 2, 3, ..., 7825} into two
parts. How big a number is 27825? “Way too big.” At least, way too big to
deal with without a computer.

No non-computational existence proof for this problem is known — that is,
the only way we know to solve this problem is with something like a SAT
solver.

3

How far are we from being able to solve the full Pythagorean triples
problem?

We did the case of two parts; how about three? We can show that the set
{1, 2, ..., 107} can be partitioned into three parts such that no part contains
a Pythagorean triple. So, if there is some 𝑛 such that every 3-partitioning
of 𝑛 has a part containing a Pythagorean triple, we know that 𝑛 > 107.

How many ways are there to partition the set {1, 2, ..., 107} into three
parts?

• 1 can go in set 1, set 2, or set 3 (3 ways)
• 2 can go in set 1, set 2, or set 3 (9 ways)
• …
• 107 can go in set 1, set 2, or set 3 (3107 ways)

So there are 3107 ways to partition the set {1, 2, ..., 107} into three
parts. This number is so big that we might not ever solve the three-valued
Pythagorean triples problem.

And the problem we originally started with, when it was any finite number of
parts — well, good luck.

Why do we care?

Why are we playing these games? Because solving these problems is anal-
ogous to the problems we face in software verification and automated bug-
finding.

• Bug-finding is finding counterexamples. “Finding a bug in a large
hardware system is essentially the same as finding a partition avoid-
ing all Pythagorean triples.” (If you don’t find one, it doesn’t mean
there isn’t one, but if you do find one, it is definitely there.)

4

• Verification is proving that there is no counterexample. “Proving cor-
rectness [of a large hardware system]…is similar to proving that each
partition must contain some Pythagorean triple.”

The focus of most of this course is on using solvers for automated software
bug-finding and verification. So this article is honestly doing something sort
of quaint by using them formathematical proofs, instead. Like, “More secure
and reliable software? Who cares about that? Let’s just do math problems
for their own sake!” But I still think the article is very helpful for helping us
understand how one goes about encoding a problem as a SAT problem,
and then how the solver goes about solving it.

(BTW, SAT is perhaps even more important for hardware verification than it
is for software verification. The article claims, “SAT has revolutionized hard-
ware verification.” “Bounded model checking using satisfiability solving” by
Edmund Clarke et al. (2001) is the citation for that claim. I’m actually not
sure how much that paper has to do with hardware, but it’s a good one to
look at if you want to know about the relationship between model checking
and SAT solving.)

BTW, what is model checking?

This is a diversion, but maybe worth knowing about because it overlaps with
studying SAT and SMT, and I myself didn’t know this until recently.

So, a piece of hardware or software can be modeled as a finite-state ma-
chine. If you’ve taken a theory of computation class then you know about
finite state machines. (The Clarke et al. paper talks about “transition sys-
tems”, which are a generalization of finite state machines.) Model checking
means exhaustively exploring the state space of a system to check whether
a certain property is true. So for instance, suppose you want to make sure

5

that some property is always true. Well, you exhaustively go through every
state that the system can be in, and you check that it’s true in every state.
One particularly effective way of doing this is using satisfiability solvers.

Motivating problem #2: Boolean Schur triples problem

So at this point they switch problems to a different problem, which is related,
but small enough to actually work out ourselves.

So, the “Boolean Schur triples problem”: Does there exist a red/blue color-
ing of the numbers 1, ..., 𝑛 such that there is no monochromatic solution of
𝑎 + 𝑏 = 𝑐 with 𝑎 < 𝑏 < 𝑐 ≤ 𝑛?
(A “Schur triple” is just any three numbers (𝑎, 𝑏, 𝑐) where 𝑎 + 𝑏 = 𝑐. The
“Boolean” in the name of the problem here just refers to the fact that there
are two color options, red and blue.)

So this time we’re dealing with all natural numbers, not just squares of nat-
ural numbers.

For 𝑛 = 8, such a coloring exists. Anyone remember what it was from the
paper?

To spill the beans: color 1, 2, 4, 8 red, and color 3, 5, 6, 7 blue.

So how would you have solved this in a naive brute-force way?

Well, there are two ways to color each number, right? Red and blue. So,
with 8 numbers, that’s 28 possibilities. How many is that? 256. And then
for each possibility (say, 1 red and 2-8 all blue), you have to go through and
consider each subset of 3 numbers a, b, c, where 𝑎 + 𝑏 = 𝑐, and make
sure that a, b, and c weren’t all colored the same color.

Or maybe you would pick out all subsets of three numbers that are the same

6

color, and then make sure that two of them don’t add up to the remaining
one. I dunno.

This is not necessarily the most efficient way to solve the problem, though.
What if you could avoid having to go through all 256 colorings?

In the paper they show how for 𝑛 = 9, there’s no way to do the coloring,
and they figure this out without having to consider all 29 = 512 possible
red/blue colorings. In fact, they say that with “brute reasoning” (which I think
of as meaning “brute force, but employed in a clever way”), only six (partial)
red/blue colorings even need to be checked. We’ll look at a SAT encoding
of this problem and come back to why you only need to check six colorings
in a bit.

SAT solving terminology

So let’s finally talk about SAT solving, and to do that we have to define some
terms.

• A “Boolean variable” can be assigned either true or false.

• A “literal” is either a Boolean variable or its negation. So if 𝑥 is a
Boolean variable, then 𝑥 is a literal, and so is ¬𝑥.

• A literal 𝑥 is true if the Boolean variable 𝑥 is assigned to true; a literal
¬𝑥 is true if the Boolean variable 𝑥 is assigned to false. (Sometimes
we abuse terminology by talking about “assigning to a literal”, when
it’s only variables that can be assigned to.)

• A “clause” is a disjunction of literals, that is literals connected by an
“or”. So if 𝑥 and 𝑦 are Boolean variables, then 𝑥∨𝑦 is a clause, and
so is 𝑥 ∨ ¬𝑦 ∨ 𝑧, and so on. A single literal by itself is also a clause.

7

• A “SAT formula” is a conjunction of clauses. So (𝑥 ∨ 𝑦) ∧ (¬𝑧 ∨ 𝑞)
is a SAT formula. This is called conjunctive normal form (CNF): a
formula is in CNF if it is a conjunction of clauses (or a single clause).

• An “assignment” is a mapping of each Boolean variable in a SAT
formula to either true or false. The reading says: A clause is satisfied
by an assignment if that assignment makes at least one of its literals
true. A formula is satisfied by an assignment if all of its clauses are
satisfied. (BTW, an assignment is also called an “interpretation” of
the variables.)

• A SAT formula is “satisfiable” if there exists some satisfying assign-
ment for it, and “unsatisfiable” if there does not exist any satisfying
assignment.

• “solving” a SAT formula is determining its satisfiability or unsatisfia-
bility.

• A “SAT solver” is a computer program that solves SAT formulas.

Q: So, for instance, is (𝑥 ∨ ¬𝑦) ∧ (¬𝑥 ∨ 𝑦) satisfiable?
A: Yes. What are the satisfying assignments? x = true, y = true is one; the
other is x = false, y = false.

Q: How computationally hard is SAT?

A: Satisfiability of general Boolean formulas is a famously NP-complete
problem. In fact, it was the first problem proven to be NP-complete, in 1971.
There’s no known polynomial-time algorithm for solving the SAT problem,
and the question of whether SAT has a polynomial-time algorithm is equiv-
alent to the P versus NP problem.

But the silver lining of NP-completeness (and the paper makes sure to point

8

this out) is that any problem in NP can be efficiently converted to SAT. This
is why SAT solvers are so damn useful, because a whole lot of interesting
computational problems (especially software and hardware verification) can
be converted to SAT, and then you can throw a SAT solver at them.

Practically though; speaking, modern SAT solvers often do a good job on
really big formulas. You might have heard people talk about the so-called
“SAT revolution” or “SMT revolution”. In the early 90s, solvers could handle
formulas with thousands of clauses; today, solvers can handle formulas with
millions of clauses.

Also, just as an aside: if the formula is a conjunction of clauses and the
clauses are each a disjunction of exactly two literals, then that’s known as
a 2SAT formula, and these are solvable in polynomial time! (Look up 2-
satisfiability on Wikipedia to learn lots more about this.) However, this isn’t
helpful unless you have clauses that are each a disjunction of exactly two
literals.

Solver internals: CDCL, BCP

The article mentions three “paradigms of SAT solving”, and I like the article’s
description of these, so I’m just going to reproduce it here.

• “local search”: incomplete; tries to find a solution via local modifica-
tions to total assignments

What does incomplete mean? It means if you give it a formula, it can only
find satisfying assignments to the formula, but it cannot tell you for sure if
the formula is unsatisfiable.

So it’s “sound”, meaning that if it tells you a satisfying assignment, then you
know that that really is a satisfying assignment. But it’s incomplete, meaning

9

that if it doesn’t give you a satisfying assignment, that doesn’t mean that
there isn’t one! So the answers you get back from local search are either
“yes, here is a satisfying assignment” or “shrug”.

• “look-ahead”: complete; recursively splits the problem as cleverly as
possible into subproblems

• “conflict-driven clause learning” (CDCL): complete; tries to assign
variables to find a satisfying assignment, and if that fails (the normal
case), then the failure is transformed into a clause called a “conflict
clause” which is added to the formula you’re trying to satisfy. (This
is what “clause learning” means.)

These two paradigms are both sound and complete. If it doesn’t give you
a satisfying assignment, you know that there is not one. The answers you
get back are either “yes, here is a satisfying assignment” or “no, there is no
satisfying assignment”.

CDCL

OK, so what is CDCL? BTW, if you’ve heard of DPLL, CDCL is the successor
to it. DPLL is the grandaddy of SAT solving algorithms and has been around
since the ’60s; CDCL is the modern successor to DPLL. (There’ll be more
on this in a future reading assignment.)

OK, so, CDCL at a very high level (we’ll go into more detail on the CDCL
algorithm in the coming days):

Three phases: simplify, decide, learn.

• simplify: simplify the formula you have and update the assignment
with any new inferences you learn. (We’ll see an example of this in
a second.)

10

• decide: pick an unassigned variable and assign it true or false, using
some heuristic. The heuristics that you use here are called, unsur-
prisingly, “decision heuristics”.

Q:What’s a heuristic, by the way?

A: A heuristic is an approach that’s “fast enough” and “good enough” that
we use when we don’t necessarily know the optimal thing to do. Heuristics
usually have some pathological case that goes wrong.

The article mentions a couple of kinds of these decision heuristics, but we’re
not really going to talk about that today at all; we’ll read about it in the coming
weeks. At a high level, though, the idea is that you have to somehow choose
which variable to assign to, and you have to choose what to assign to it.
Making a good decision early on can make solving the whole problem faster.

OK, so you iterate these two phases until one of two things happen:

• you have a satisfying assignment (yay, you’re done).
• at least one clause has been falsified — you made a mistake some-
where.

In the “you made a mistake” case, you’ve created what’s called a “conflict”.
You need to learn from your mistake and make sure you don’t make it again
in the future. So, you go to the “learn” phase:

• learn: add a new clause called a “conflict clause” to the formula. The
point of the “conflict clause” is to prevent the decide phase from mak-
ing that particular mistake again, i.e., prevent the solver from trying
that particular assignment again. We’ll see an example of what a
conflict clause looks like in a little while. Then you backtrack to be-
fore you made the mistake, and you go back up to the simplify/decide
cycle and keep going.

11

Q: OK, so what about unsatisfiability? What if your formula is unsatisfiable
— when do you find that out?

A: During the learn phase. It turns out that if the new “conflict clause” you’re
forced to add is what’s called the “empty clause”, which is a clause that can’t
be satisfied, that means that you have an unsatisfiable formula (yay, you’re
done).

That’s a very high-level overview of CDCL. It’s OK if it doesn’t make sense
now; we’ll talk about this a lot more when we read chapter 2 of the Kroening
and Strichman book.

Unanswered question: in the decide phase, what heuristics do you use to
pick an unassigned variable and assign it? We’ll come back to this later in
the course.

BCP

What this article calls “unit clause propagation” (UCP) is also known as “unit
propagation” or “Boolean constraint propagation” (BCP). I’ll use the term
BCP because I think it’s more common.

BCP is a part of the CDCL algorithm. This is again something we’ll study
more later, but let’s talk about it really quick:

Recall that a clause is a disjunction of literals. So the way to satisfy a clause
is to make at least one of its literals true.

A clause is “unit” under a partial assignment that makes all but one of its
literals false, and leaves one unassigned. The only way to satisfy a unit
clause under that partial assignment is to assign the necessary value to
make the remaining literal true.

12

So, if you have a partial assignment and a formula, and the formula has unit
clauses, then you go through the unit clauses and add to the assignment
by assigning variables to satisfy the unit clauses. This is what’s known as
Boolean constraint propagation. There are two possibilities:

• you’ve satisfied all the unit clauses
• you’ve created a conflict, because two unit clauses contradict each
other (one has a literal 𝑥, and the other has ¬𝑥)

If you created a conflict, you then have to deal with the conflict. We’ll talk
about this more soon, but at a high level, one of two things will happen:

• you have to backtrack and do something different
• you figure out that the formula is unsatisfiable

Q: If a formula has a unary clause to begin with, is it a unit clause?

A: Yep. So you should do BCP right away, even before you make any deci-
sions.

Illustrating CDCL and BCP: back to Boolean Schur triples

Let’s see an example of CDCL and BCP in action.

So, back to the Boolean Schur triple problem: Does there exist a red/blue
coloring of the numbers 1, …, n such that there is no monochromatic solu-
tion of a + b = c with 𝑎 < 𝑏 < 𝑐 ≤ 𝑛?
We’re thinking about the case where n = 9.

First step is to encode this problem as a SAT problem.

They encode it this way:

13

Enumerate all the ways where a + b = c where a, b, and c are drawn from
the set 1, …, 9, and a < b < c <= n.

There turn out to be 16 of these:

• 1 + 2 = 3
• 1 + 3 = 4
• 1 + 4 = 5
• 2 + 3 = 5
• 1 + 5 = 6
• 2 + 4 = 6
• 1 + 6 = 7
• 2 + 5 = 7
• 3 + 4 = 7
• 1 + 7 = 8
• 2 + 6 = 8
• 3 + 5 = 8
• 1 + 8 = 9
• 2 + 7 = 9
• 3 + 6 = 9
• 4 + 5 = 9

So our triples are (1, 2, 3), (1, 3, 4), … (4, 5, 9). And we want to show that
there is a way to color each of the numbers 1, …, 9 either red and blue in
such a way that all of these triples have some red and some blue in them.
In other words, at least one number in each triple has to be red, and at least
one number in each triple has to be blue.

We have 9 Boolean variables, 𝑥1, 𝑥2, …, 𝑥9, representing each of the
numbers 1 through 9, respectively. We’ll encode red as true and blue as
false.

14

And then we just write out two clauses for each of the 16 triples. One clause
will say that at least one of the numbers has to be red, so, for the triple (1,
2, 3), for instance, we have the clause (𝑥1 ∨ 𝑥2 ∨ 𝑥3). And one will say
that at least one of the numbers has to be blue, so, again for (1, 2, 3), we
have the clause (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3).
And the formula is just the conjunction of all of these clauses. So if this
formula is satisfiable, then we have a red/blue coloring that satisfies the
property, and if it isn’t, then we don’t.

There are, as we said before, 29 = 512 possible assignments of true and
false to the variables. But we said that you actually only have to check six
of them.

So what do they do? Well, let’s look at 𝑥1 first. It has two possibilities, false
and true.

x1
/ \

f t
In the world where 𝑥1 is false, then let’s think about 𝑥3. Say that it’s false.

x1
/ \

f t
|
x3

/
f

OK, so 𝑥1 is false and 𝑥3 is false. Well, now we can do BCP!

Well, it says that 𝑥2 has to be true, because 𝑥1, 𝑥2, and 𝑥3 are in a clause
together. And it says that 𝑥4 has to be true, because 𝑥1, 𝑥3, and 𝑥4 are in

15

a clause together.

So 𝑥2 and 𝑥4 have to be true, but then they’re in a triple with 𝑥6, so 𝑥6 has
to be false.

But 𝑥1 and 𝑥6 are in a triple with 𝑥7, so then 𝑥7 has to be true. And 𝑥3 and
𝑥6 are in a triple with 𝑥9, so then 𝑥9 has to be true.

But now we have a conflict because all of 𝑥2, 𝑥7, and 𝑥9 are now true and
they’re in a triple together. In other words, the part of our formula that says
(¬𝑥2 ∨ ¬𝑥7 ∨ ¬𝑥9) is now unsatisfiable.

So we’ve just ruled out all assignments where both 𝑥1 and 𝑥3 are false,
regardless of the other settings. (That’s a lot of assignments.)

What do we do now? Well, we know that one of 𝑥1 and 𝑥3 have to be true,
right? So now we’ve learned our first conflict clause! The conflict clause
will be (𝑥1 ∨ 𝑥3). Then we go back to before we set 𝑥3 to true, and try
something else.

So now consider the case where 𝑥1 is false but 𝑥3 is true. No conflicts yet,
so then we can go a little deeper. Consider 𝑥5. Let’s say it’s false.

What does that tell us? Once again, we can do BCP.

It says that 𝑥4 has to be true, because 𝑥1, 𝑥4, and 𝑥5 are in a clause
together. And it says that 𝑥6 has to be true, because 𝑥1, 𝑥5, and 𝑥6 are in
a clause together.

So then 𝑥2 has to be false, because 𝑥2, 𝑥4, and 𝑥6 are in a triple together.
and since 𝑥5 is false, and 𝑥2, 𝑥5, and 𝑥7 are in a triple together, 𝑥7 has to
be true. But now 𝑥3 is true, 𝑥4 is true, and 𝑥7 is true, and they’re in a triple
together.

16

So we’ve just ruled out all assignments where 𝑥1 is false, 𝑥3 is true, and
𝑥5 is false. We already know that one of 𝑥1 and 𝑥3 has to be true. So now
we know that 𝑥1 and 𝑥5 can’t be false at the same time, because if 𝑥1 is
false, then 𝑥3 has to be true.

So we’ve learned another conflict clause: (𝑥1 ∨ 𝑥5).
And so on. It turns out we can keep applying similar reasoning to this, and
we end up only having to consider six partial assignments to show that the
formula is unsatisfiable.

x1
/ \

/ \
/ \

/ \
/ \

f t
| |
x3 x3

/ \ / \
f t f t

| |
x5 x5

/ \ / \
f t f t

So let’s back up a second. That worked out pretty well for us, but the whole
reason why it worked out so well was because we looked at 𝑥1 first, and
then looked at 𝑥3, and so on. If we had looked at the variables in a different
order, we might not have been able to rule out huge chunks of the search
space so fast.

17

Q: So how did I know to look at 𝑥1 first, and then 𝑥3, and so on?

A: Using a simple heuristic — the “Maximum Occurrences in clauses of
Minimal Size” heuristic, known affectionately as “MOMS”.

When we start, all the clauses are of the same size, and 𝑥1 occurs the
most. So we start with 𝑥1. Then, after simplification, 𝑥3 occurs the most in
clauses of minimal size, and so on. It turns out that this simple heuristic is
enough to cut the number of partial assignments that need to be checked
down to 6.

They point out that for the original problem that they talked about, the
Pythagorean Triples problem, this simple heuristic isn’t enough, and in fact
the authors of this paper had to design a special, fancy heuristic just for
solving that problem. They cite their own paper about that.

Who watches the watchmen?

Do you trust a SAT solver that claims a problem is unsatisfiable?

If a solver says a formula is satisfiable, that’s one thing. The solver will
provide a satisfying assignment, and it’s easy to check that the assignment
actually does satisfy the formula.

But, if a solver says a formula is unsatisfiable, like in the Boolean Schur
triples problem instance that we just talked about, how do you know it’s
correct? Especially if it’s a solver using some special, fancy heuristic, how
do you know you can trust it?

Well, you could formally verify the SAT solver itself. But that’s really hard
to do. And most people are going to want to use their fast SAT solver of
choice, not the not-necessarily-state-of-the-art verified one.

18

The other idea is to have the solver produce a “certificate” of an unsatisfiabil-
ity claim, or a proof of unsatisfiability. It then needs to be possible to quickly
and automatically validate the proof, that is, make sure that it actually does
certify unsatisfiability.

What does such a proof of unsatisfiability look like? The article discusses
one technique for creating them. The idea is this: to determine unsatisfiabil-
ity of the formula, we had to deduce a whole bunch of these conflict clauses,
right? So, we should be able to make sure that the solver did the right thing
by making sure that each conflict clause was deduced correctly. This is
called a clausal proof of unsatisfiability.

Adding a new clause to the forumla you’re trying to determine the satisfia-
bility or unsatisfiability of is a risky thing, right?

Q:What property do you want to have be true when you add a clause?

A: Well, you want to make sure that you don’t change the satisfiability of
the formula by adding a clause. In other words, you want the addition of a
clause to be “solutions-preserving”: any satisfying assignments that there
were for the previous formula should also satisfied by the new formula with
the added clause.

It turns out that this is actually pretty easy to check, though. If you have a
formula F and you want to know that a new clause C is solutions-preserving,
just take the partial assignment that makes all literals in C false. Then do
BCP on F with that assignment. If you get a conflict, then you know that the
clause is solutions-preserving, since you now know that it’s not possible to
falsify C and also satisfy F.

So, to check a proof of unsatisfiability, we just need a list of all the clauses
that were learned and added, and then we use BCP to check the proof. It’s

19

surprisingly straightforward!

We don’t have time to go into more detail about this, but the citation for this
if you want to know more is “Verification of Proofs of Unsatisfiability for CNF
Formulas” by Goldberg and Novikov (2003). The paper is only six pages
long.

There’s more stuff in the article about what it means to be solutions-
preserving modulo a particular variable, but we don’t have time to get into
that.

20

	Lecture notes for: ``The science of brute force''
	Agenda
	Welcome to CSE290Q
	Motivating problem #1: Pythagorean triples problem
	Simplified problem
	How far are we from being able to solve the full Pythagorean triples problem?

	Why do we care?
	BTW, what is model checking?

	Motivating problem #2: Boolean Schur triples problem
	SAT solving terminology
	Solver internals: CDCL, BCP
	CDCL
	BCP

	Illustrating CDCL and BCP: back to Boolean Schur triples
	Who watches the watchmen?

