
Lecture notes for: Introduction to decision proce-
dures, part 1

Lindsey Kuper

October 2, 2019

These are lecture notes to accompany sections 1.0-1.3 (pp. 1-14) of Kroen-
ing and Strichman’s Decision Procedures: An Algorithmic Point of View,
second edition. See https://decomposition.al/CSE290Q-2019-09/readings.
html for the full collection of notes.

Agenda

• What’s a theory (informally)?
• More terminology
• Soundness and completeness; decidability
• Normal forms

What’s a theory (informally)?

So, this course is about SMT solving, and the T in SMT stands for “theories”.
What is a theory?

We haven’t defined this formally yet, and we aren’t going to right now. But,
informally, it’s the language that formulas can be written in.

So, last time we looked at SAT formulas, like 𝑥1 ∨ (𝑥2 ∨ ¬𝑥3). When
you’re just talking about SAT solving, which is all we talked about last time,
you’re only concerned with formulas that look like this.

These SAT formulas are also called propositional logic formulas (I’ll in-

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html


terchangeably say “SAT formula” and “propositional logic formula” in this
course). Propositional logic is the simplest theory. The formulas are built
out of Boolean variables, conjunction (∧), disjunction (∨), negation (¬), and
parentheses. So the inductive definition of a formula is: - a Boolean vari-
able by itself is a formula (we call this an “atomic formula” or just an “atom”)
- if 𝜙 is a formula, then ¬𝜙 is a formula - if 𝜙1 and 𝜙2 are formulas, then
(𝜙1 ∧ 𝜙2) is a formula - if 𝜙1 and 𝜙2 are formulas, then (𝜙1 ∨ 𝜙2) is a
formula

(If we followed these rules to the letter, then we would need to put more
parentheses in, but the usual convention is to omit a lot of the parentheses
and assume a certain order of operations.)

Also, this doesn’t say anything about being in CNF, but every propositional
logic formula can be rewritten in CNF, so we usually just assume CNF. Last
time, when we talked about SAT formulas we assumed they were in CNF.

So, propositional logic is one theory. But what if we want to have formulas
with more stuff in them? Here’s one example from the book:

𝑦1 = 𝑦2 ∧ ¬(𝑦1 = 𝑦3) ⟹ ¬(𝑦2 = 𝑦3)
What did we add to the language that formulas can be written in? Well,
we have a couple of new symbols: implication and equals. We haven’t
said anything about the domain that the variables come from; are they still
Boolean variables like in propositional logic, or could they be something
else, like numbers? We’ll talk more about that later.

So this formula is from the “theory of equality”, or “equality logic”. It’s per-
haps not all that exciting of a theory, since it turns out that it’s not any more
expressive than the theory of propositional logic. But it might allow for a
more natural way to encode some problems.

2



Here’s another formula:

2𝑧1 + 3𝑧2 ≤ 5 ∧ 𝑧2 + 5𝑧2 − 10𝑧3 ≥ 6
So now there’s a lot more stuff. We have inequalities; we have numbers;
we’ve got addition and subtraction. It looks like our variables definitely come
from some sort of domain of numbers now. This is what’s called a linear
arithmetic formula.

The “linear” in linear arithmetic refers to the fact that you’re not allowed to
multiply variables with each other. You can only add or subtract them.

Again, we haven’t said what domain the variables come from. But if they
come from the domain of real numbers, then we have what’s often called
the theory of linear real arithmetic. If they come from the domain of integers,
that’s often called the theory of linear integer arithmetic. Sometimes it’s also
called the theory of Presburger arithmetic.

Believe it or not, these kinds of formulas can be converted to plain old boring
SAT formulas and then solved with a SAT solver. (A citation for this is “On
Solving Presburger and Linear Arithmetic with SAT” (Ofer Strichman, 2002).
Even though it makes sense that one decidable theory can be converted to
another, simpler decidable theory — in the same way that any programming
language can be compiled to machine language — it’s still kind of mind-
blowing to me that it’s possible.) But that is not, in fact, what most solvers
do. We’ll talk more about this more as we get further along in the book.

So, I’m listing all these off not because I want to talk about any of the details
of these theories today, because I don’t want to do that today, but simply
because I want to give you some kind of intuition for what a theory is, and
introduce you to the idea that when I talk about a “formula”, it may not neces-
sarily be a propositional logic formula, like the formulas we talked about on

3



Monday, but it may in fact be a formula that comes from some other theory.

So we’re going to define some more terms, and they’ll overlap with terms
that we defined last time, but some of the definitions will be more general
now, because now we’re talking about arbitrary formulas and not necessar-
ily just propositional logic formulas.

More terminology

I mentioned before that a Boolean variable by itself is an “atom” in propo-
sitional logic. In general, regardless of the theory, an “atom” is a formula
with no propositional structure. That is, it doesn’t contain any ∧, ∨, or ¬
connectives.

So, in the propositional logic formula 𝑥 ∨ ¬𝑦, 𝑥 and 𝑦 are atoms. But in
an equality logic formula, like 𝑦1 = 𝑦2 ∨ ¬(𝑦1 = 𝑦3), the atoms are the
equalities 𝑦1 = 𝑦2 and 𝑦1 = 𝑦3. So, the atoms of a formula depend on
the theory.

This means we can also generalize another of our definitions from last time.
Last time we said a “literal” is either a Boolean variable or its negation.
That’s the case for propositional logic, but in general, a literal is either an
atom or its negation. So, 𝑦1 = 𝑦2 and ¬(𝑦1 = 𝑦3) are the literals in the
aforementioned formula.

Last time we said that an “assignment” is a mapping of each Boolean vari-
able in a SAT formula to either true or false. We can generalize that one,
too. Say we have a formula, call it 𝜙, from some theory – doesn’t matter
which one. We can now say that:

• an “assignment” of 𝜙 from a domain 𝐷 is a mapping of 𝜙’s variables
to elements of 𝐷. So, if 𝐷 is the integers, maybe an assignment

4



would be like x = 1, y = -3.

• If the assignment gives mappings for all of the variables in the for-
mula, it’s a “full” assignment of that formula, and otherwise it’s a “par-
tial” assignment of the formula.

• And just like yesterday, a formula is “satisfiable” if there is some as-
signment that makes the formula evaluate to true, and “unsatisfiable”
otherwise.

So this is all the same as yesterday, it’s just that now the domain can be
something other than just true and false.

Q: What do we call it when the formula is satisfied by every assignment?

A: Then we say that the formula is “valid” or a “tautology”.

Q: What’s the relationship between satisfiability and validity?

A formula 𝜙 is valid if and only if ¬𝜙 is unsatisfiable. Which is convenient,
because you can check the validity of a formula by checking if its negation
is unsatisfiable.

So, if I have a validity checker, and I want to know the satisfiability of a for-
mula, I just negate the formula and run the validity checker on the negated
formula. If the answer I get back is “valid”, then the formula was unsat-
isfiable, and if the answer I get back is “not valid”, then the formula was
satisfiable.

Conversely, if I have a satisfiability checker, and I want to know the validity of
the formula, again, I just negate the formula and run the satisfiability checker
on it. If the answer I get back is “unsatisfiable”, then the formula is valid. If
the answer I get back is “satisfiable”, then the formula is not valid.

5



So, validity checking and satisfiability checking are interchangeable, in the
sense that if you can do one then you can trivially do the other.

If we have an assignment, call it 𝛼, that satisfies a formula 𝜙, then we write
𝛼 ⊨ 𝜙. You can pronounce this “𝛼 satisifies 𝜙”. If “𝜙” is satisfied by every
assignment — in other words, if 𝜙 is valid — then we can just write ⊨ 𝜙 and
leave off the 𝛼 part.

Q: Should anything that I said just now give you pause, now that we’re
talking about arbitrary formulas and not just plain old SAT formulas?

A: Yes. The word “evaluate” should give you pause! We already know how
to “evaluate” a propositional logic formula, because we can write down a
truth table that tells us what the propositional logic connectives mean. And
we said last time that “solving” a SAT formula is determining its satisfiability
or unsatisfiability, and a “SAT solver” is a computer program that solves SAT
formulas. SAT solvers use CDCL and fancy heuristics, but we could also
do it on paper with a truth table, if we had a million years.

But do we know how to evaluate an arbitrary formula that comes from some
theory? We can do it only if we have a definition of what formulas in that
theory “mean”, also known as a “semantics”.

So “SMT solving” is determining the satisfiability or unsatisfiability of formu-
las for some arbitrary theory or combination of theories that you plug in a
semantics for, and an “SMT solver” is a computer program that does SMT
solving. And, just as with SAT, the semantics for a theory on paper might be
pretty simple, in the way that truth tables for propositional logic are simple,
but the computer program can be a lot more complicated, in the way that
CDCL and fancy heuristics for computerized solving of propositional logic
formulas can be. In this course, we’ll be trying to understand some of the
complicated parts.

6



Soundness and completeness; decidability

We talked a little about soundness and completeness last time with regard to
paradigms of SAT solving, and now we can generalize that to SMT solving,
too.

So, we’re going to say that the “decision problem” for a given formula is
determining whether or not it is valid. I’m following the book’s definition here.
But we could just as easily say that the decision problem is determining
whether or not the formula is satisfiable, because they amount to the same
problem.

So then we can define “decision procedure”:

A “decision procedure for a theory 𝑇 ” is an algorithm that, given any for-
mula of the theory 𝑇 : - always terminates - when it returns ‘Valid’, the input
formula is valid (soundness: the algorithm never lies and says the formula
is valid when it is not) - when the input formula is valid, it returns ‘Valid’
(completeness: the algorithm never lies and says that the formula is not
valid when it is)

And we say that a theory is “decidable” if and only if there is a decision
procedure for it.

I think all the theories that we’re going to talk about in this course are de-
cidable theories. Once you know a theory is decidable, then the question
becomes how hard the decision problem is for that theory. Most of the ones
we’re going to talk about have NP-complete decision problems.

Normal forms

It turns out that the notion of conjunctive normal form or CNF that we had
from before also generalizes beyond propositional logic. Before, we just

7



said that a clause was a disjunction of literals, and a formula was in CNF
if it was a conjunction of clauses. All that still applies, except now a literal
can be any atom or its negation. So a formula is in CNF if it’s a conjunction
of disjunctions of literals, regardless of what the atoms might be.

There are some other useful normal forms to know about:

• a formula is in disjunctive normal form (DNF) if it’s a disjunction of
conjunctions of literals.

• a formula is in negation normal form (NNF) if negation is only allowed
over atoms, and ∧, ∨, and ¬ are the only allowed Boolean connec-
tives.

And the DNF and CNF formulas are both subsets of the NNF formulas. The
book also covers an algorithm for converting formulas to CNF, which is kind
of interesting to learn about, but we won’t go over it now.

8


	Lecture notes for: Introduction to decision procedures, part 1
	Agenda
	What's a theory (informally)?
	More terminology
	Soundness and completeness; decidability
	Normal forms


