
Lecture notes for: Introduction to SAT solving,
part 1

Lindsey Kuper

October 7, 2019

These are lecture notes to accompany sections 2.1-2.2.3 (pp. 27-38) of
Kroening and Strichman’s Decision Procedures: An Algorithmic Point
of View, second edition. See https://decomposition.al/CSE290Q-2019-
09/readings.html for the full collection of notes.

Agenda

• Motivating examples: probems encodable as SAT problems
• Implementing SAT solvers

– BCP recap
– An elementary-school SAT solver (no guessing)

Motivating examples: problems encodable as SAT prob-
lems

Q: Questions left over from last time?

There was one question last time that I want to try to address. So we talked
about how we are for the most part only going to be interested in quantifier-
free theories.

And Will asked, “But you really need quantifiers to be able to talk about a
lot of interesting things, don’t you? Why can we get away without them?”

I didn’t have a great answer offhand. All I could think of is “Well, in this

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html

course we’re interested in decision procedures that can actually run on a
real computer, so we need our theories to be decidable, and for that I think
we mostly need to avoid quantifiers. And the obvious success of SMT solv-
ing with quantifier-free theories demonstrates its usefulness.” That answer
is fine as far as it goes, but it didn’t really answer the question. So: why can
we do so much with quantifier-free theories?

I guess one way to answer that question is to say, well, we know that just
solving plain ol’ SAT (without quantifiers allowed in the formulas) is NP-
complete, therefore any NP problem can be encoded as a SAT problem,
and so we already know that you don’t actually need quantifiers to express
(most?) computationally interesting problems. But your ability to exploit
that fact depends on your ability to come up with a clever encoding in a
quantifier-free theory. (And that, the machine can’t do for you!)

But there’s yet another point to make, which is that when we ask a question
of an SMT solver about a formula, the questions we’re asking do implicitly
contain quantifiers. If you’re asking if the formula is satisfiable, then you’re
asking if there exists a satisfying assignment. And if you’re asking if the
formula is valid, the you’re asking if, for all assignments, the formula is true.
So there’s an implicit quantification happening.

So instead of thinking of most theories as “first-order logics minus the quan-
tifiers”, it might make sense to think of them as “first-order logics where you
can quantify over assignments, and you have to do it around the outside of
the whole formula”.

But enough about SMT; today we’re going back to talking about SAT! And
before we jump back into CDCL, maybe it’ll be useful to start out by looking
at a problem that can be encoded as SAT.

So, say we’re the FCC and we’re assigning frequencies to radio stations.

2

We have 𝑛 radio stations, 𝑠1, ...𝑠𝑛, and we have 𝑘 transmission frequen-
cies, where 𝑘 < 𝑛. So some stations need to share a frequency, but we
want them to not be too close to each other. For now we’re not going to
consider relative distance, and we’re just going to say, okay, some pairs of
stations are above a threshold for being too close, and other pairs are not.
So we know all the pairs of stations that are too close. Say, maybe stations
3 and 4 are too close to each other to share a frequency. We have a set of
all such pairs.

By the way, the book chose to frame this problem as radio station frequency
allocation, but the problem is very similar to the problem of register alloca-
tion in a compiler. Say you have to compile a program to run on some
hardware. The program has some number of variables; the hardware has
some number of registers, which might be fewer than the number of vari-
ables. So you need to figure out which variables conflict with each other.
There’s a notion of variables being “live” during some part of a program’s
run, and you need to first figure out which variables have overlapping live
ranges. That’s analogous to a pair of radio stations being too close. Then
you need to make sure not to assign them to the same register.

It’s not quite the same problem, though, because in the case of the radio sta-
tions, if you don’t have enough transmission frequencies, then the problem
is just unsatisfiable.

Q: But what does the compiler do if it doesn’t have enough registers?

A: It just allocates things in memory instead of in registers. So register
allocation is really more of an optimization problem rather than a decision
problem. If you don’t have enough registers, your compiler usually isn’t
gonna be like, “Sorry! UNSAT!”

Q: Actually, this is an interesting question. Under what conditions would

3

you actually want the compiler to say “Sorry, UNSAT”?

I think you might want that if you were compiling code to run on an embed-
ded system that had some extremely limited amount of memory.

I asked around about this on Twitter this morning, about whether there are
compilers that ensure that compiled programs don’t run out of memory at
runtime, and I got a lot of interesting replies. I’ll send a Canvas announce-
ment pointing to the Twitter thread in case any of you want to peruse it.

Anyway, it turns out that it’s really straightforward to represent the input to
this problem as a graph, and then the problem becomes how to color the
graph. In the case of the radio stations, we say that every station is a node
in the graph, and for every two stations that are too close together to share
a frequency, we draw an edge between them.

Likewise for the register allocation, we say that every variable is a node in
the graph, and for every two variables that have overlapping live ranges, we
draw an edge between them.

Then the problem becomes to color the nodes, where the number of colors
that we have is the number of slots that we have to allocate things into. So,
frequencies in the case of radio stations, registers in the case of program
variables. And the idea is to come up with a coloring so that adjacent nodes
are assigned different colors.

This is the graph colorability problem: does such a coloring exist? But we
can also describe it as a SAT problem.

The setup is: Define a set of Boolean variables 𝑥𝑖𝑗 where 𝑖 ranges from 1
to 𝑛 and 𝑗 ranges from 1 to 𝑘. The idea is that variable 𝑥𝑖𝑗 is set to true iff
radio station 𝑖 is assigned the frequency 𝑗.

4

Q: So, what constraints do we have that affect what our satisfying assign-
ment can be?

A: First, every station gets at least one frequency. So how do we encode
that?

Suppose there are 4 stations and 3 frequencies. Then the formula for ex-
pressing that each station gets at least one frequency would be:

(𝑥11 ∨ 𝑥12 ∨ 𝑥13) ∧ (𝑥21 ∨ 𝑥22 ∨ 𝑥33) ∧ (𝑥31 ∨ 𝑥32 ∨ 𝑥33) ∧ (𝑥41 ∨
𝑥42 ∨ 𝑥43)
In general, for any number of 𝑛 stations and 𝑘 frequencies, the formula is a
conjunction of clauses where each clause is the disjunction of 𝑥𝑖1, ..., 𝑥𝑖𝑘.

So that’s making sure that every station gets at least one.

Secondly, we have to make sure each station gets at most one. This is a
little bit harder to encode!

But let’s try to do it. Again, to make it concrete, let’s still say there are 4
stations and 3 frequencies.

The encoding of this one is kind of hairy. But, in general, if a station is
assigned to a frequency you want to make sure that it isn’t assigned to any
other frequency. So if 𝑥11 is true, then that means station 1 is assigned to
frequency 1, so you then need to make sure that station 1 isn’t assigned to
frequencies 2 or 3.

((𝑥11 ⟹ (¬𝑥12 ∧ ¬𝑥13)) ∧ (𝑥12 ⟹ ¬𝑥13))
∧
((𝑥21 ⟹ (¬𝑥22 ∧ ¬𝑥23)) ∧ (𝑥22 ⟹ ¬𝑥23))
∧
((𝑥31 ⟹ (¬𝑥32 ∧ ¬𝑥33)) ∧ (𝑥32 ⟹ ¬𝑥33))

5

∧
((𝑥41 ⟹ (¬𝑥42 ∧ ¬𝑥43)) ∧ (𝑥42 ⟹ ¬𝑥43))
Thirdly, you need the set of pairs of stations that are close to each other. So
for every pair (𝑖, 𝑗) in that set,

add an implication 𝑥𝑖𝑡 ⟹ ¬𝑥𝑗𝑡 for every 𝑡 < 𝑘.
So, if stations 3 and 4 happen to be close, we have

(𝑥31 ⟹ ¬𝑥41) ∧ (𝑥32 ⟹ ¬𝑥42) ∧ (𝑥33 ⟹ ¬𝑥43)
Q: Do you also need the other way around? That is, do you also need:

(𝑥41 ⟹ ¬𝑥31) ∧ (𝑥42 ⟹ ¬𝑥32) ∧ (𝑥43 ⟹ ¬𝑥33)
A: It turns out you don’t, because 𝑝 ⟹ 𝑞 desugars to 𝑞 ∨ ¬𝑝. So the
above becomes:

(¬𝑥31 ∨ ¬𝑥41) ∧ (¬𝑥32 ∨ ¬𝑥42) ∧ (¬𝑥33 ∨ ¬𝑥43)
So the SAT encoding of the problem consists of the conjunction of all these
pieces.

The book doesn’t actually discuss how the solver operates on this particular
problem; it merely gives it as an example of an encoding of a real-world
problem as a SAT problem to help motivate the need for SAT solving.

By the way, I thought it would be interesting to try to encode the problem of
assigning papers to presenters in this class as a SAT problem (or maybe
an SMT problem). But I didn’t manage to come up with an encoding in the
limited time I had to think about it, although I’m certain that it’s possible.
Might be something fun to try on your own if you want to get some practice
encoding problems as SAT.

6

Implementing SAT solvers

Q: Questions about the example we just went over?

OK, let’s talk about implementing SAT solvers some more!

We’re going to assume from now on that the input to the solver is a Boolean
formula in CNF. We can do this with no loss of generality because you can
efficiently convert any SAT formula to CNF. We didn’t go over it in class, but
there’s a standard algorithm for it called the Tseytin transformation. (Not
Satan, as in the Prince of Darkness, but Tseytin.) The details of that con-
version are in Chapter 1 of the book.

So, given one of these CNF formulas, the goal of the solver is to find a
satisfying assignment or determine that there is no satisfying assignment,
and it does this by building up an assignment one variable at a time and
then backtracking if it discovers it made a mistake.

We’re going to be talking about conflict-driven clause learning SAT solvers.
As we talked about last Monday, you can think of there being three phases
to the CDCL algorithm:

• simplify: simplify the formula you have, update the current assign-
ment with anything you can infer (BCP happens here)

• decide: make a decision about a variable and its value, using some
heuristic to choose which variable and which value to try next (we’ll
talk about heuristics laser)

• learn: add a new clause to the formula summarizing information
learned from a conflict, and backtrack to where you were before you
made the decision that caused the conflict

with the “simplify” and “decide” phases iterating until you encounter a con-
flict, in which case you go to the “learn” phase.

7

So the book has a pictorial overview of the CDCL algorithm, and we can
label parts of this figure with those three phases of simplify, decide, and
learn.

The “simplify” phase is BCP. The “decide” phase is “Decide”, obviously. And
the “learn” phase is the “AnalyzeConflict” and “Backtrack”

BCP recap

So, as CDCL solving proceeds, there are various states that a clause in a
formula can be in:

• satisfied if at least one of its literals is satisfied by the current partial
assignment. (Recall that a clause is a disjunction.)

• conflicting if all its literals are assigned and it is not satisfied by the
current partial assignment.

• unit if all but one of its literals are assigned and it is not satisfied.
These are the ones that we said are hanging on the edge of being
conflicting.

It’s the unit clauses that are particularly interesting, because they allow us
to extend the assignment. In fact, they require us to extend the assignment!
For instance, if we have the assignment {𝑥1 = true, 𝑥2 = false, 𝑥4 =
true}, and we have the clause (¬𝑥1 ∨ ¬𝑥4 ∨ 𝑥3), then we know we need
to extend the assignment with 𝑥3 = true.

This is called the unit clause rule – whenever you have a unit clause, you
must extend the current assignment with the binding that will satisfy that
clause.

Recall how the “Science of Brute Force” paper spoke of unit clause prop-
agation, or UCP. That’s what we’re going to call Boolean constraint prop-

8

agation, or BCP. But it’s the same thing as that paper’s UCP. And BCP is
simply repeated application of the unit clause rule.

Q: What’s the name for a unit clause that causes a particular literal to be-
come assigned?

A: We call it the antecedent clause of that literal. So in the example I just
gave, (¬𝑥1 ∨ ¬𝑥4 ∨ 𝑥3) is the antecedent clause of 𝑥3.

As CDCL runs, decisions get made about the values of variables, and we
can think of these decisions as forming a binary tree. So for instance, if we
decide the value of 𝑥1 first, then that decision is made at depth 1 in the tree.
Therefore the decision about $x_1 was made at decision level 1. Any other
decisions that have to get made as a result of that decision also happen at
level 1.

One important thing to keep in mind is that decisions are guesses, whereas
when we add bindings to the assignment as a result of BCP, those aren’t
guesses. When you run CDCL, it might actually be the case that you don’t
have to make any guesses! Maybe you have a formula where it’s already
the case that you have a unit clause (because you had a unary clause in
the formula, so you have a literal that you know has to be true). You don’t
want to make guesses unless it’s necessary.

So this suggests that you should also do BCP right away when you start
CDCL, even before you make any decisions! And, indeed, that’s what this
picture looks like.

An elementary-school SAT solver (no guessing)

When I was a kid in elementary school, from time to time we had to do
these logic puzzles that would be something along the lines of, there are five

9

people, and they all have favorite colors, and they all have favorite sports,
and they all have favorite animals, and your job would be to fill in some
table assigning people to their favorite colors or sports or animals or what
have you. And you’d get a list of constraints, which would be something like
“the person whose favorite sport is basketball hates the color red”, and “the
person whose favorite animal is the zebra plays either soccer or volleyball”
and so on. And one of these constraints would give you a place to start
from that would allow you to propagate information to further constrain the
search.

As I recall, these puzzles were always designed in such a way that you
would never have to make guesses and then backtrack if your guess was
wrong. You would instead be able to figure out the entire assignment by
propagating what you already knew. In other words, all decisions would be
made at decision level 0, in the initial BCP phase.

By the way, those logic puzzles were usually always designed in such a way
that they had a solution. But it is possible that during this initial BCP phase,
you find out that the formula does in fact not have a solution. So, if you
implemented the elementary school logic puzzle version of a SAT solver, it
would look like this:

// Elementary-school SAT solver
// given a formula F, returns SAT or UNSAT
CDCL(F):

// initialize empty assignment
A = {}
// do BCP on the initial formula
if BCP(F, A) = conflict

return UNSAT
while notAllVariablesAssigned(F, A)

10

// Give up and complain to the
// teacher that the problem is underconstrained

return SAT

Of course, we’re not doing the elementary school logic puzzle version of
CDCL, we’re doing the version of CDCL that actually has to deal with having
to make guesses. What the CDCL algorithm gives you is a framework for
making good guesses and then gracefully backing out of our guesses when
it turns out we made bad ones.

So, something is going to have to go here in place of “give up and complain
to the teacher”, right?

// given a formula F, returns SAT or UNSAT
CDCL(F):

// initialize empty assignment
A = {}
// do BCP on the initial formula
if BCP(F, A) = conflict

return UNSAT
while notAllVariablesAssigned(F, A)

// Do stuff
return SAT

Next time, we’ll talk about what we have to do in place of “Do stuff” there.

11

	Lecture notes for: Introduction to SAT solving, part 1
	Agenda
	Motivating examples: problems encodable as SAT problems
	Implementing SAT solvers
	BCP recap
	An elementary-school SAT solver (no guessing)

