
Lecture notes for: Introduction to SAT solving,
part 2

Lindsey Kuper

October 9, 2019

These are lecture notes to accompany sections 2.2.4-2.2.9 (pp. 38-50)
of Kroening and Strichman’s Decision Procedures: An Algorithmic Point
of View, second edition. See https://decomposition.al/CSE290Q-2019-
09/readings.html for the full collection of notes.

Agenda

• Recap of last time
• Grown-up SAT solving: the full CDCL algorithm

– Making decisions
– Learning from our bad decisions
– Knowing when to give up, and when to back up and try again

• Implication graphs

Recap of last time

OK! So when we finished last time, we wrote down what I called an “ele-
mentary school” SAT solving algorithm. It looked like this:

// Elementary-school SAT solver
// given a formula F, returns SAT or UNSAT
CDCL(F):

// initialize empty assignment
A = {}

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html


// do BCP on the initial formula
if BCP(F, A) = conflict

return UNSAT
while notAllVariablesAssigned(F, A)

// Give up and complain
return SAT

So the idea is that, whenwewere solving one of those logic puzzles from ele-
mentary school, we could generally solve themwithout making any guesses.
In other words, we never had to use the “Decide” part of the CDCL algorithm,
which is the part that makes guesses. We just considered what we currently
knew, and then propagated that knowledge to extend the assignment until
all variables were assigned.

As we’ve discussed, BCP is just repeated application of the unit clause rule.
Recall that the unit clause rule says that whenever you have a unit clause,
you must extend the current assignment with the binding that will satisfy
that clause. So in this algorithm, you do BCP and keep on extending the
assignment until you either come up with a conflicting clause, in which case
the formula is unsatisfiable, or until you run out of unassigned variables,
in which case you’re done and the formula is satisfiable. If neither of those
things happen, then you give up and complain to the teacher, “This problem
is too hard!”

Grown-up SAT solving: the full CDCL algorithm

If we happen to have a formula that can be solved by just propagating what
we know until every variable is assigned or until we come up with a con-
flicting clause, then the elementary school SAT solver is good enough. It
would have been good enough for those elementary school puzzles, be-
cause those puzzles could be solved without guessing. But, more gener-

2



ally, we’re going to want to solve formulas that may require some amount
of guessing. So we want to do something here instead of “give up and
complain”.

Making decisions

Being a grown-up sometimes requires making decisions even when you
don’t have all the information, and so grown-up SAT solving will have to do
that too.

Q: So, what do we have to do instead of give up and complain? Any sug-
gestions?

A: Well, we’re going to have to make a guess, right? We’re going to have to
pick a variable and say “suppose this one is true”, or “suppose this one is
false”. And we’ll have to keep track of the place where we made a decision
and everything that followed from it, in case it comes to pass that we have
to undo the decision later.

So now we need to use the concept of “decision level” that we introduced
last time.

In the elementary-school SAT solver, we never actually had tomake a guess.
All variables were assigned at decision level 0. In other words, we didn’t
have any decision variables, which are variables that get their assignment
as a result of a guess. But nowwe’re going to have to start making decisions,
and keeping track of where we made them. That’s what the decision level
is for. So we’ll introduce a variable called decisionLevel for that.

And now, instead of giving up and complaining, we need to venture bravely
into the unknown and make a decision about some variable in the formula.
So, we’re going to pick out an as-yet-unassigned variable, and we’re going

3



to extend the assignment with a binding for it. This will be our first decision
variable.

How do we know which variable to assign to and whether to assign it true or
false? We don’t. We make the choice using some heuristic. The choice of
heuristic is orthogonal to the CDCL algorithm, although of course it has pro-
found implications for the performance of the solver, and different heuristics
are more appropriate for different kinds of formulas. We don’t have time to
get into decision heuristics now, though.

// given a formula F, returns SAT or UNSAT
CDCL(F):

// initialize empty assignment
A = {}, decisionLevel = 0
// do BCP on the initial formula
if BCP(F, A) = conflict

then return UNSAT
while notAllVariablesAssigned(F, A)

decisionLevel++
// add a new decision to the assignment
// based on some heuristic
A = A extended with DECIDE(F, A)
// Do stuff (more to come here...)

return SAT

Every time we make a decision, we increment the decision level. You can
visualize this as a binary tree: if we first decide 𝑥1, then that decision is
made at decision level 1, and the next decision will be made at decision
level 2, and so on. The decision level of a variable is the depth of the binary
tree at which that variable was assigned.

4



Of course, we don’t have to make a decision about every variable. For many
variables, their value will be implied by BCP. We call these implied variables,
as opposed to decision variables.

The decision level of an implied variable is the maximum of the decision
levels of the other variables in its antecedent clause. (Recall that the an-
tecedent clause of a variable is the unit clause that implied its value. Deci-
sion variables don’t have antecedent clauses; implied variables do.)

And whenever we update an assignment with a new variable, either by do-
ing BCP or by calling DECIDE, we keep track of the decision level of that
variable, too.

Learning from our bad decisions

Once we’ve made a decision about a variable, there are two possibilities.
Either it was a bad decision, meaning it will lead to a conflict, or it was a
good decision, meaning it will lead to the formula being satisfied.

Q: How do we find out whether our decision leads to a conflict?

A: We can do BCP again! We’ve extended our assignment, right? So
maybe that extended assignment will lead to a conflict, and we run BCP
to find out.

Q: What do we do if BCP tells us that we have a conflict?

A: Well, up above, when we encountered a conflict, we just returned UNSAT
right away, because we knew then that the formula was unsatisfiable. But
now, we can’t do that, because the conflict we encountered might not be
because the formula is unsatisfiable; it might have merely been the result
of us making a bad decision!

5



Q: How do we know which kind of conflict we have on our hands?

A: We can analyze the conflict! We do that by…calling ANALYZE-
CONFLICT, of course.

// given a formula F, returns SAT or UNSAT
CDCL(F):

//initialize empty assignment
A = {}, decisionLevel = 0
// do BCP on the initial formula
if BCP(F, A) = conflict

return UNSAT
while notAllVariablesAssigned(F, A)

decisionLevel++
// add a new decision to the assignment
// based on some heuristic
A = A extended with DECIDE(F, A)
if BCP(F, A) = conflict

// ANALYZE-CONFLICT returns a backtracking
// level and a new conflict clause
(bl, C) = ANALYZE-CONFLICT()
// add newly learned conflict clause to F
F = F extended with C
// Do stuff (more to come here...)

return SAT

ANALYZE-CONFLICT looks at the current conflicting clause in the formula
and tells us two things: a backtracking level, which is the decision level that
we need to go back to in order to undo our mistake, and a conflict clause,
which is the newly learned clause that we need to add to our formula.

6



Let’s talk about the conflict clause first. By the way, there’s almost a naming
collision here, between “conflict clause” and “conflicting clause”. These are
not the same thing!

Q: What’s a conflicting clause? We talked about this last time.

A: A clause is conflicting if all its literals are assigned and it is not satisfied by
the current partial assignment. It’s a state that a clause can be in during the
process of SAT solving, depending on what the current partial assignment
is. So, the process of BCP can result in a clause becoming conflicting.

On the other hand, a conflict clause, which we first talked about way back
for the first reading assignment, is a newly learned clause that you add to
the original formula during solving. A conflict clause can be thought of as
summarizing information that was already in the formula. The purpose of
adding a conflict clause to a formula is to help us solve the formula faster by
avoiding assignments that won’t work out. A conflict clause is produced as a
result of a conflict that arises during the process of BCP, but a conflict clause
is not the same thing as a conflicting clause! This is a really unfortunate
almost-collision of terminology.

By the way, in real CDCL implementations, instead of just tacking the conflict
clause onto the end of the formula, we would have a clause database that
we would add the new clause to. We would probably also have some sort of
fancy efficient data structure for representing the formula. We could spend
weeks on this topic alone if we had time.

OK, so that’s the conflict clause, but ANALYZE-CONFLICT also returned
something else: a backtracking level. The backtracking level is the decision
level that we need to go back to in order to undo our mistake. Essentially,
it’s a number that tells you how far in the decision tree you need to back up.

7



The backtracking level tells us something important about the conflict we
encountered: whether it was because the formula is actually unsatisfiable,
or merely the result of making a bad decision. If ANALYZE-CONFLICT re-
turns, say, decision level 2, then we need to undo any decisions made at
higher levels (and any assignments that happened as a result of those deci-
sions), and try again. If ANALYZE-CONFLICT returns decision level 0, that
means we need to go back to the very first decision made.

Knowing when to give up, and when to back up and try again

Q: What if ANALYZE-CONFLICT returns -1 as the backtracking level?

A: Then it’s telling us to back up further than it’s possible to back up. In
other words, a backtracking level of -1 means that the conflicts we’re en-
countering aren’t the fault of our bad decisions — it’s just that the formula
is unsatisfiable! So, if bl is less than 0, we just return UNSAT.

Otherwise, if the backtracking level is 0 or higher, it means that we have
a place to back up to, and we need to undo the decision that led to the
conflict. To do this, we call BACKTRACK with the backtracking level and
the current assignment A. BACKTRACK updates the assignment to remove
any bindings that it added as a result of the bad decision that we want to
undo. (How does it know which ones those were? Because we’ve been
recording the decision level of every assigned variable.)

Finally, we update the current decision level to whatever that new backtrack-
ing level is, and we go back up to the top of the “while notALlVariablesAs-
signed(F, A)” loop and keep going from the point that we backtracked to.
The process continues until we either return UNSAT, or we assign every
variable and BCP doesn’t discover any conflicts, in which case we fall out
the bottom of the while loop and return SAT. And now we’ve finally written

8



down the whole CDCL algorithm!

9



// given a formula F, returns SAT or UNSAT
CDCL(F):

//initialize empty assignment
A = {}, decisionLevel = 0
// do BCP on the initial formula
if BCP(F, A) = conflict

return UNSAT
while notAllVariablesAssigned(F, A)

decisionLevel++
// add a new decision to the assignment
// based on some heuristic
A = A extended with DECIDE(F, A)
if BCP(F, A) = conflict

// ANALYZE-CONFLICT returns a backtracking
// level and a new conflict clause
(bl, C) = ANALYZE-CONFLICT()
// add conflict clause to formula
F = F extended with C
// if the backtracking level returned by
// ANALYZE-CONFLICT was less than 1,
// we know the formula is unsatisfiable
if bl < 0

return UNSAT
else

// undo our mistake; go back to the last
// decision level before the mistake
BACKTRACK(A, bl)
decisionLevel = bl

return SAT

10



By the way, this way of expressing the algorithm is a bit different what Kroen-
ing and Strichman show in chapter 2 (although it amounts to the same thing).
It is closer to what appears in chapter 4 of the Handbook of Satisfiability. It’s
also a lot like the version that Emina Torlak uses in her slides. (In particular,
as in Emina’s slides, I explicitly show extending the formula with the learned
conflict clause as part of the main CDCL algorithm, instead of making that
a part of ANALYZE-CONFLICT.)

During solving, the decision level may move up and down. It gets incre-
mented every time we make a new decision, but it may jump backward by
one or more based on what ANALYZE-CONFLICT returns.

We’ve seen the overall structure of the algorithm, but we glossed over how
DECIDE works and how ANALYZE-CONFLICT works. We don’t have time
to talk about either of these now, but we’ll introduce the concept of an im-
plication graph, which helps us understand how ANALYZE-CONFLICT can
construct conflict clauses.

Implication graphs

Suppose we have the following formula:

(𝑥1 ∨ ¬𝑥4) ∧ (𝑥1 ∨ 𝑥3) ∧ (¬𝑥3 ∨ 𝑥2 ∨ 𝑥4)
When solving this formula with CDCL, we start by trying to do BCP, but there
are no unit clauses. So we go on to picking a variable to decide. Suppose
we pick 𝑥4 and assign it false.

We write “¬𝑥4@1” to denote that 𝑥4 was assigned false at decision level
1.

Q: Now we can do BCP again. Does this result in any new implied vari-
ables?

11

https://courses.cs.washington.edu/courses/cse507/19au/doc/L04.pdf


A: No. So we need to decide another variable. Suppose we pick 𝑥1 and
assign it false as well. So we have ¬𝑥1@2.
Q: And now we do BCP yet again. Any new implied variables this time?

A: Yes! This time we have 𝑥3@2 and 𝑥2@2 (denoting that 𝑥3 and 𝑥2, re-
spectively, were assigned true at decision level 2). Notice that the decision
level for both of these is the maximum decision level of the other variables
in their antecedent clauses. The antecedent clause for 𝑥3 was (𝑥1 ∨ 𝑥3),
and the antecedent clause for 𝑥2 was (¬𝑥3 ∨ 𝑥2 ∨ 𝑥4).
There are no more unassigned variables, so we’ve determined that the for-
mula is satisfiable. (That was an easy one — we didn’t have any conflicts.)

We can use the notion of antecedent clauses to define a directed acyclic
graph that connects assigned variables to one another. Every assigned
variable is a node in the graph. The edges in the graph come from an-
tecedent clauses: for each variable 𝑥, there is an edge from each variable
in 𝑥’s antecedent clause to 𝑥. (𝑥 also occurs in its own antecedent clause,
but we omit the edge from 𝑥 to itself.)

Only implied variables have antecedent clauses, so only implied variables
can have incoming edges. Decision variables have no antecedent clauses,
so they cannot have incoming edges, only outgoing edges. That is, they
are source nodes in the graph.

This graph is called the implication graph. The convention when drawing
these implication graphs is to start with decision variables the left and have
directed edges go to the right.

For example, an implication graph for the series of assignments we just did
would be as follows: on the left we have two decision variables, ¬𝑥4@1
and ¬𝑥1@2. There’s no edge between these two; they’ve both decision

12



variables, so neither has any incoming edges.

Then from BCP we get 𝑥3@2. Its antecedent was (𝑥1 ∨ 𝑥3), so we add
an edge from 𝑥1 to 𝑥3. And we also have 𝑥2@2. Its antecedent was
(¬𝑥3 ∨ 𝑥2 ∨ 𝑥4), so it has incoming edges from both 𝑥3 and 𝑥4.

The implication graph looks like this:

~x_4@1 ------------- \
\
>

x2@2
>

/
~x_1@2 ------> x_3@2 /

If unit propagation results in a clause being conflicting, then we add a special
node called a conflict node to the implication graph, and we add edges from
the nodes representing the variables of the conflicting clause to the conflict
node. The conflict node is always a sink node in the graph.

For instance, suppose that our formula is the following:

(𝑥1 ∨ ¬𝑥2) ∧ (𝑥1 ∨ ¬𝑥3) ∧ (𝑥2 ∨ 𝑥3) ∧ ⋯
Suppose we begin by assigning ¬𝑥1@0. Then from BCP we get ¬𝑥2@0
and ¬𝑥3@0, making the third clause in the formula conflicting.

The implication graph looks like this:

13



~x_2@0
> \

/ \
/ >

~x_1@0 conflict
\ >
\ /
> /

~x_3@0

For implication graphs that have a conflict node, the source nodes that the
conflict node can be reached from represent the decision variables that
played a role in the conflict. So, one way to construct a conflict clause is
to take the disjunction of the negation of those assignments. For example,
for the above simple formula, the conflict clause is the unary clause (𝑥1),
because the source node in the implication graph set 𝑥1 to false.

Does the unary clause (𝑥1) tell us anything that the original formula didn’t?
No. But that’s the point: conflict clauses don’t add new information, they just
summarize existing information. Had the clause (𝑥1) been a part of the for-
mula from the beginning, we never would have tried assigning 𝑥1 = false
because we would have been forced to assign 𝑥1 = true during the initial
BCP. By adding the conflict clause, we avoid exploring any other assign-
ments that set 𝑥1 = false.

There are more sophisticated ways of constructing conflict clauses, but it
works pretty well to just look at the implication graph, find all the literals
associated with source nodes from which the conflict node can be reached,
and then take the disjunction of their negations!

14


	Lecture notes for: Introduction to SAT solving, part 2
	Agenda
	Recap of last time
	Grown-up SAT solving: the full CDCL algorithm
	Making decisions
	Learning from our bad decisions
	Knowing when to give up, and when to back up and try again

	Implication graphs


