
Lecture notes for: Introduction to SMT solving

Lindsey Kuper

October 11, 2019

These are lecture notes to accompany sections 3.1-3.4 (pp. 59-72) of Kroen-
ing and Strichman’s Decision Procedures: An Algorithmic Point of View,
second edition. See https://decomposition.al/CSE290Q-2019-09/readings.
html for the full collection of notes.

Agenda

• Eager and lazy solvers
• The DPLL(𝑇 ) framework

– Boolean abstractions and overapproximations of satisfiability
– The role of the theory solver

• Offline and online solving

Eager and lazy solvers

We’ve been discussing the architecture of CDCL SAT solvers. Now we’re
going to talk about how we can solve formulas written using more inter-
esting theories. In particular, we want to look at solvers for quantifier-free
fragments of first-order theories, as we talked about a few lectures ago. In-
stead of a plain old SAT formula, we might have, say, a linear real arithmetic
formula, such as, for instance,

((𝑥1 > 1) ∧ (2𝑥1 < 5)) ∨ ¬(𝑥2 = 0).
So, our formulas still have propositional structure, but the atoms of the for-
mulas depend on the theory we’re using.

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html


There are traditionally two approaches to SMT solving: the eager approach
and the lazy approach. Eager SMT solving involves compiling the entire
SMT formula to a plain old SAT formula and then solving the SAT formula
with a SAT solver. This is possible to do for any decidable theory, and is
similar in spirit to to compiling a program in a high-level language to as-
sembly language. But the formula can grow in size exponentially when it
is encoded as SAT, and moreover, the eager approach means we lose the
opportunity to reason at the (higher) level of the theory we’re using, instead
of at the (lower) level of SAT formulas.

That said, there are some state-of-the-art eager SMT solvers. One of them,
for instance, is the STP solver, which is what the first paper on our reading
list is about. STP solves formulas in the theory of bit-vectors and arrays by
eagerly compiling them to SAT (after some preprocessing).

Most modern SMT solvers, though, are lazy. In the lazy approach, a SAT
solver is still involved, but we also have specialized theory solvers that in-
teract with the underlying SAT solver during the solving process. That is,
the solving process is an interplay between the SAT solver and the theory
solver.

An SMT solver like Z3 has multiple built-in theory solvers, each for a specific
theory, although for a given problem you might only use one of the built-in
theories.

Today we’re going to restrict our attention to discussing lazy SMT solvers,
which are the topic of chapter 3 of Kroening and Strichman. It’s a sign of
how much lazy SMT solving has become the norm in the last ten years
that the second edition of Kroening and Strichman, which came out in 2016,
made chapter 3 only about lazy solving. There used to be stuff about eager
solving in chapter 3 in the first edition of the book, which came out in 2008,

2



but in the new edition they demoted it to chapter 11. (So if you want to read
about eager solvers, look at chapter 11 of the book.)

The DPLL(T) framework

The lazy SMT solver framework we’ll discuss is commonly known as
DPLL(𝑇 ). The “(𝑇 )” part is to indicate that it is parameterized by some
theory 𝑇 . That is, you can plug in a theory solver for your theory of choice
into the DPLL(𝑇 ) framework, and that theory solver will interact with the
underlying SAT solver, which, generally speaking, is a CDCL SAT solver.
(As I’ve mentioned, DPLL is the predecessor to CDCL, and doesn’t involve
clause learning.) So DPLL(𝑇 ) is a misnomer; it should really be called
CDCL(𝑇 ), but the name DPLL(𝑇 ) seems to have stuck.

In the DPLL(𝑇 ) framework, the underlying CDCL SAT solver and the theory
solver for the theory 𝑇 have distinct roles to play.

What does the theory solver have to be able to do? The theory solver that
you plug in to the DPLL(𝑇 ) framework needs to be able to handle conjunc-
tions of literals from the theory 𝑇 . (Recall that a literal is either an atom or
its negation.)

Now, building a theory solver that can handle conjunctions of literals for a
given theory is not necessarily easy to do. In fact, the design and implemen-
tation of these theory solvers is the topic of most of the rest of the Kroening
and Strichman book after this chapter!

But let’s assume for a moment that we do have such a theory solver for
a particular theory. That is, we have a solver that can take a formula that
consists of a conjunction of literals from 𝑇 and tell us either “satisfiable” or
“unsatisfiable”.

3



And we’ll follow Kroening and Strichman and pick a really simple theory to
start with, which is the theory of equality.

Boolean abstractions and overapproximations of satisfiability

To do lazy SMT solving, we need a Boolean abstraction of the original
formula. These are also known as propositional skeletons, and that’s
what the book calls them. But I’ll just say “Boolean abstraction” because
it’s shorter.

To get the Boolean abstraction, or propositional skeleton if you like, we take
each atom of the linear arithmetic formula and replace it with a new Boolean
variable. Recall that atoms are formulas with no propositional structure.

For instance, in our linear real arithmetic formula ((𝑥1 > 1) ∧ (2𝑥1 <
5)) ∨ ¬(𝑥2 = 0), the atoms are (𝑥1 > 1), (2𝑥1 < 5), and (𝑥2 = 0).
So the Boolean abstraction of that formula is (𝑏1 ∧ 𝑏2) ∨ ¬𝑏3 (I’m using 𝑏
to make it more obvious that the variables are Booleans).

Notice that the Boolean abstraction has three variables (which are Boolean
variables) whereas the original formula had two (which are real numbers).
So in general, the number of variables doesn’t stay the same from the orig-
inal formula to the Boolean abstraction.

The function that turns a formula into its Boolean abstraction is called, un-
surprisingly, a Boolean abstraction function.

For our running example, we’re using the theory of equality. In this theory,
atoms are equalities, like 𝑥 = 𝑦. So here’s a formula in the theory of
equality:

𝑥 = 𝑦 ∧ ((𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧)) ∨ 𝑥 = 𝑧)

4



And its Boolean abstraction looks like this:

𝑏1 ∧ ((𝑏2 ∧ ¬𝑏3) ∨ 𝑏3)
Since the Boolean abstraction is just a SAT formula, we can pass it to a SAT
solver, which will run and come up with an assignment.

Q: Is the Boolean abstraction satisfiable?

A: Sure, of course it is. There are multiple satisfying assignments, even. But
let’s suppose the SAT solver happens to produce the following satisfying
assignment:

{𝑏1 = true, 𝑏2 = true, 𝑏3 = false}
But that’s a satisfying assignment for the Boolean abstraction, not for the
original formula.

Q: If the Boolean abstraction was satisfiable, does that mean that the origi-
nal formula is satisfiable?

A: No, not necessarily! So we still have to determine whether the original
formula is satisfiable. We’ll come back to that.

But let’s say we had a different equality logic formula to begin with. Say we
had this.

(𝑥 = 𝑦 ∨ 𝑥 = 𝑧) ∧ ¬(𝑥 = 𝑦) ∧ (𝑥 = 𝑦 ∨ ¬(𝑥 = 𝑧))
Then the Boolean abstraction would be this:

(𝑏1 ∨ 𝑏2) ∧ ¬𝑏1 ∧ (𝑏1 ∨ ¬𝑏2)
Q: Is this one satisfiable?

A: No, this one is unsatisfiable.

5



Q: Does that mean that the original formula was unsatisfiable?

A: It turns out that the answer is yes! In general, if the Boolean abstraction
of a formula is unsatisfiable, then so is the original formula. However, if the
Boolean abstraction is satisfiable, then the original formula may or may not
be satisfiable.

• Boolean abstraction is unsatisfiable ⟹ original formula is unsat-
isfiable modulo the theory, and we’re done, yay!

• Boolean abstraction is satisfiable ⟹ original formula may or may
not be satisfiable modulo the theory, and we have more work to do.

We say that the Boolean abstraction overapproximates the satisfiability of
the original formula.

That “more work to do” part is where the theory solver comes in.

The role of the theory solver

OK, so suppose we have a Boolean abstraction that is satisfiable. Then
what?

Well, now begins a conversation between the SAT solver and the theory
solver.

Going back to our original formula𝑥 = 𝑦∧((𝑦 = 𝑧∧¬(𝑥 = 𝑧))∨𝑥 = 𝑧),
the SAT solver determined that its Boolean abstraction 𝑏1 ∧ ((𝑏2 ∧ ¬𝑏3) ∨
𝑏3) is satisfiable with the assignment {𝑏1 = true, 𝑏2 = true, 𝑏3 = false}.
But we still need to figure out whether the original formula is satisfiable.

Now what we can do is go back to the theory solver. Recall that the theory
solver can only solve conjunctive formulas in the theory. But we can con-
struct one of those by just writing down the formula that corresponds to the

6



assignment that the SAT solver just gave us!

In particular, the SAT solver gave us this assignment: {𝑏1 = true, 𝑏2 =
true, 𝑏3 = false}. 𝑏1 corresponds to the atom 𝑥 = 𝑦, 𝑏2 to the atom
𝑦 = 𝑧, and 𝑏3 to the atom 𝑥 = 𝑧. So, we can write down the following
formula:

𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧)
We hand that to the theory solver (recall we’re assuming we have one of
those). And the theory solver runs, and what do you know? It returns “un-
satisfiable”.

So now what? Well, what happens now is similar in spirit to what happened
in CDCL, when we ran into a conflict using a particular partial assignment
and then we had to learn a clause that would prevent us from trying that
partial assignment again.

So, what we want to do is try again with the SAT solver and get it to come
up with a different assignment that also satisfies the Boolean abstraction,
and that moreover corresponds to a satisfiable formula in the theory. So
what we can do is take the negation of the unsatisfiable formula above:

¬(𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧))
Because this is a negation of an unsatisfiable formula, that means it’s always
true. We convert that back into a Boolean abstraction:

¬(𝑏1 ∧ 𝑏2 ∧ ¬(𝑏3))
which is the equivalent of:

¬𝑏1 ∨ ¬𝑏2 ∨ 𝑏3

So that’s a clause that we can add to our Boolean abstraction:

7



𝑏1 ∧ ((𝑏2 ∧ ¬𝑏3) ∨ 𝑏3) ∧ (¬𝑏1 ∨ ¬𝑏2 ∨ 𝑏3)
This newly added clause is called a blocking clause. The purpose of the
blocking clause is to prevent the SAT solver from coming up with the same
assignment that it came up with last time.

The blocking clause is analogous to the conflict clauses that the SAT solver
learns during CDCL. In fact, some sources call it a “theory conflict clause”.
Kroening and Strichman call it a blocking clause. Either name works.

And now we go back to the SAT solver once again.

The SAT solver runs, and it comes up with another satisfying assignment:

{𝑏1 = true, 𝑏2 = true, 𝑏3 = true}.
And this new satisfying assignment from the SAT solver corresponds to the
following formula in the theory:

𝑥 = 𝑦 ∧ 𝑦 = 𝑧 ∧ 𝑥 = 𝑧
So we run that through the theory solver, and the theory solver reports that
it is satisfiable.

And this means that the original formula in the theory, which was

𝑥 = 𝑦 ∧ ((𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧)) ∨ 𝑥 = 𝑧),
is indeed satisfiable.

To sum up, this is the overall pattern:

• Given a formula in the theory, construct a Boolean abstraction of it
that overapproximates satisfiability.

• If the SAT solver returns “unsatisfiable”, we’re done, yay.

8



• If the SAT solver returns “satisfiable”, check to make sure that the
satisfying assignment is legitimate, as follows:

– Run the theory solver on the formula corresponding to the as-
signment returned by the SAT solver.

* If the theory solver returns “satisfiable”, we’re done, yay.

* If the theory solver returns “unsatisfiable”, add a blocking
clause to the Boolean abstraction, and try again with the
SAT solver.

Q: Do you see any problems with doing things this way?

A: So, one problem that I see is that when you add the blocking clause to the
Boolean abstraction, it rules out only one particular assignment. It will stop
the solver from making that same exact assignment again. But that’s not
very efficient. We might end up having to go through every single satisfying
assignment, and then checking the formula that corresponds to that assign-
ment using the theory solver. If there are a lot of satisfying assignments,
that could be really slow.

So ruling out one bad assignment at a time will work, eventually, but it will
be slow. It would be really nice if we could add blocking clauses that would
rule out large chunks of the space of assignments in one fell swoop.

So for example, say you have this formula that’s a big conjunction of a thou-
sand literals:

𝑥 = 𝑦 ∧ 𝑥 < 𝑦 ∧ 𝑙1 ∧ 𝑙2 ∧ … ∧ 𝑙998

We can tell by looking at this that it’s unsatisfiable, because there’s no way
for the first two atoms to both be satisfiable. Regardless of what 𝑙1 through
𝑙998 are, we know that it’s unsatisfiable. So a blocking clause that only rules
out one of the assignments to the Boolean abstraction of this formula is not

9



that helpful.

We call 𝑥 = 𝑦 ∧ 𝑥 < 𝑦 the minimal unsatisfiable core of the formula. And
it turns out you can compute these minimal unsatisfiable cores and add the
negation of them instead.

Online and offline solving

Lazy SMT solvers can be further subcategorized into offline and online
solvers. I don’t think the book uses this terminology, but it’s used in other
sources.

• Offline lazy SMT solvers are SMT solvers where the theory solver
treats the underlying SAT solver as a black box. What I mean by
“black box” is that the interaction between the theory solver and the
SAT solver consists of the theory solver waiting for the SAT solver to
generate a complete satisfying assignment to the Boolean abstrac-
tion, and then checking whether the corresponding formula is satisfi-
able in the theory solver. What we just talked about doing above is
offline solving. The book calls this the “Lazy-Basic” algorithm.

• Online lazy SMT solvers have a tighter integration between the un-
derlying SAT solver and the theory solver. And this is done by inte-
grating the theory solver right into the CDCL loop. I think this is what
the book calls this the “Lazy-CDCL” algorithm.

In particular, suppose you’re running CDCL and you’ve made a partial as-
signment in the Decide step and done BCP. Now, if there’s no conflict, you
can immediately invoke the theory solver on the formula corresponding to
the partial assignment. If that turns out to be unsatisfiable in the theory
solver, you can add its negation (the blocking clause) to the formula, just
like you would normally add a conflict clause during CDCL.

10



(Better yet, you can add the negation of the minimal unsatisfiable core.)

11


	Lecture notes for: Introduction to SMT solving
	Agenda
	Eager and lazy solvers
	The DPLL(T) framework
	Boolean abstractions and overapproximations of satisfiability
	The role of the theory solver

	Online and offline solving


