
Lecture notes for: Theories: Equality and unin-
terpreted functions

Lindsey Kuper

October 14, 2019

These are lecture notes to accompany sections 3.1-3.4 (pp. 59-72) of Kroen-
ing and Strichman’s Decision Procedures: An Algorithmic Point of View,
second edition. See https://decomposition.al/CSE290Q-2019-09/readings.
html for the full collection of notes.

Agenda

• A simple decision procedure for equality logic
• Uninterpreted functions
• A decision procedure for EUF
• Proving program equivalence with EUF

A simple decision procedure for equality logic

So last time, we started talking about the lazy paradigm of SMT solving,
which involves interaction between a theory solver and a SAT solver, where
the theory solver can solve formulas consisting of conjunctions of literals
from a given theory, and the SAT solver does CDCL.

(This, by the way, is in contrast to eager SMT solving, which is what the STP
solver does, and we’ll we talking about that on Friday.)

But today, we’re talking about lazy solving. Regardless of whether we’re do-
ing offline lazy solving or online lazy solving, we’re going to need a theory

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html

solver. And most of Kroening and Strichman is devoted to the implementa-
tion of these theory solvers for various theories.

So today, we’re talking about solvers for the theory of equality, which we’ve
brought up already. This theory lets you write formulas where the atoms are
equalities, like this:

𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧)
Q: In the previous chapter, they sketched out a simple decision procedure
for formulas like this. Does anyone remember what it was?

A: So they said that you can turn it into a graph problem, where every vari-
able is a node in a graph, and then you have two kinds of edges, equality
edges and inequality edges. So we’d have a graph with three nodes — a
node each for 𝑥, 𝑦, and 𝑧 — and an equality edge from 𝑦 to 𝑧 and an in-
equality edge from 𝑥 to 𝑧. Then the idea is that the formula is unsatisfiable
if and only if you have two nodes that are connected by an inequality edge
and also have a path between them via equality edges.

So, 𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧) would be satisfiable, right? But if you had, say,

𝑦 = 𝑧 ∧ ¬(𝑥 = 𝑧) ∧ 𝑥 = 𝑦
then that would be unsatisfiable, because there’s an inequality edge from 𝑥
to 𝑧 and also an equality path from 𝑥 to 𝑧.
Q: So, the book showed this just to make it clear right off the bat that a deci-
sion procedure actually exists for the conjunctive fragment of equality logic.
But does anyone have any qualms about this particular decision procedure
that they show?

A: My qualm about it at first was that, well, sure, this decision procedure can
tell you if the formula is satisfiable or not, but if it is satisfiable, it won’t tell

2

you what the satisfying assignment is. So the constructivist mathematician
in me didn’t like it much. But then I figured that after you determine satisfi-
ability, you can construct a satisfying assignment. You’d do it like this: pick
a node, pick an arbitrary value from the domain to assign to it. For anything
reachable via equality edges, assign them the same value. Then pick a dif-
ferent arbitrary value from the domain, pick another node, and keep going.
It should be fine and you shouldn’t violate the inequality constraints as long
as you keep picking a different domain value.

It turns out it’s actually a little more complicated than this, because constants
from whatever domain you’ve chosen are allowed in equality logic, too:

𝑦 = 𝑧 ∨ (¬(𝑥 = 𝑧) ∧ 𝑥 = 2)
In the book they say you can just replace every constant with a variable,
and then for any constants that were different from each other, you add a
new conjunct to the formula saying that those variables have to be different.
When you do this, you get a formula that is satisfiable if the original formula
was satisfiable, and unsatisfiable if the original formula was unsatisfiable.
(The jargon for this is equisatisfiable. The old and new formulas are eq-
uisatisfiable if they’re both satisfiable or both unsatisfiable.) So, the claim
is that we don’t have to worry about solving formulas that have constants
in them, because we can construct an equisatisfiable formula without the
constants.

But, again, if you want to know more than just “yes, it’s satisfiable” if it’s
satisfiable — if you actually want to know the satisfying assignment — then
I think you would have to do something to keep the information around about
which constants those were that you replaced with variables. It depends if
“yes, it’s satisfiable” is a good enough answer for you, or if you need to
actually know the satisfying assignment.

3

Uninterpreted functions

This chapter is in fact not just about the theory of equality; it throws some-
thing else into themix, which is the notion of uninterpreted functions. So now
it’s the “theory of equality and uninterpreted functions”, or EUF for short.

This means that instead of just having atoms that look like 𝑦 = 𝑧, the terms
on either side of those equalities can now be function symbols that take
terms as arguments. So for instance, 𝐹(𝑦) = 𝑧 could be an atom.

What does 𝐹 mean? We don’t know what it means, and we don’t care! All
we know about𝐹 is that if (say) 𝑦 = 𝑦′, then𝐹(𝑦) = 𝐹(𝑦′). This property
is called functional congruence: instances of the same function return the
same value if given equal arguments. Having uninterpreted functions in
your theory means that you only care about functional congruence; you
don’t care about the semantics of functions otherwise.

When you do care about the semantics of functions, you have to add axioms
to your theory to define their semantics. And that’s called having interpreted
functions. But if you don’t care about the semantics then you just need
functional congruence.

Uninterpreted functions can also take multiple terms as arguments, and
we can generalize the definiton of congruence in the expected way. So,
𝐹(𝑦, 𝑥) = 𝐹(𝑧, 𝑞) if 𝑦 = 𝑧 and 𝑥 = 𝑞.
Q: What’s the purpose of having uninterpreted functions in a theory?

A: It turns out that if you take all the interpreted functions in a theory and
replace them with uninterpreted functions, and the formula is valid with just
the uninterpreted functions, then that means it was also valid in the original
version with interpreted functions. And it can be a lot easier to check for
validity when you just have uninterpreted functions. So if you want to check

4

for validity, one reasonable strategy is to convert interpreted functions to
uninterpreted functions and then check for validity with an EUF solver.

Q: What’s the catch?

A: Let 𝐹 be a formula with interpreted functions and let 𝐹 ′ be its EUF coun-
terpart with uninterpreted functions (swapping any axioms that defined the
semantics of functions for the functional congruence axiom), and suppose
we have an EUF solver. Then:

• If the EUF solver says 𝐹 ′ is valid, then 𝐹 is valid.
• If the EUF solver says the formula is not valid, then we don’t know:

𝐹 might be valid, or it might not.

Q: What’s an example of a time when the EUF solver might say that a for-
mula is not valid when in fact it would have been valid if the functions were
interpreted?

A: So suppose that your formula is this:

𝑥1 = 𝑦2 ∧ 𝑦1 = 𝑥2 ∧ (𝑥1 + 𝑦1 = 𝑥2 + 𝑦2)
So, is this formula valid? If we use the intended interpretation for +, then
yes. But maybe we don’t have a decision procedure for formulas with +
in them; maybe we only have an EUF decision procedure. So we translate
the formula to EUF like so:

𝑥1 = 𝑦2 ∧ 𝑦1 = 𝑥2 ∧ 𝐹(𝑥1, 𝑦1) = 𝐹(𝑥2, 𝑦2)
And we have functional congruence of 𝐹 as part of EUF. So, is this formula
valid in the EUF theory? No, it’s not! Why not?

What axiom about + did we lose when we switched to 𝐹? We lost the
fact that + is commutative. Functional congruence alone won’t help us, be-

5

cause 𝑥1 and 𝑥2 aren’t necessarily equal and 𝑦1 and 𝑦2 aren’t necessarily
equal.

Q: Did we lose soundness by switching from + to 𝐹?

A: Nope! We’re not going to lie and claim a formula is valid when it isn’t
as a result of switching from + to 𝐹 . But we do lose completeness. If
a formula is not valid after translation to EUF, that doesn’t mean it wasn’t
valid originally. In other words, this solving approach is sound, but it’s not
complete.

But, as we’ve discussed, sound but not complete isn’t so bad. It just means
that we’re being conservative. And moreover, we can try checking for va-
lidity of 𝐹 ′ and then fall back to checking validity of 𝐹 if you have to. In
fact, what we can do is start by trying to check for validity with the more
abstract version of a formula and then gradually add axioms or constraints
if you aren’t able to establish validity that way. This is called abstraction-
refinement.

That said, it’s pretty common that you’d want to have properties like com-
mutativity of addition expressible right from the get-go, in which case you
would want to have a theory that lets you express addition. You might have
heard of the theory “EUFA”, which stands for “equality, uninterpreted func-
tions, and arithmetic”. We’ll be reading some papers later in the course that
use that theory.

A decision procedure for EUF

Back to EUF for now, though. So, how do we solve EUF formulas? The
algorithm for this is called congruence closure and is due to Robert Shostak,
who published it in 1978. (Incidentally, Robert Shostak is also responsible
for much of what we know about Byzantine fault tolerance. He’s also the

6

brother of Seth Shostak from the SETI Institute who does a lot of public
speaking about aliens.)

So here’s the algorithm. You have a formula 𝐹 that’s a conjunction of equal-
ities over variables and uninterpreted functions.

The steps of the algorithm are:

1. Put terms in an equivalence class together if you have a predicate
saying they’re equal; put all other terms in singleton equivalence
classes

2. Merge equivalence classes that have a shared term; continue until
none are left to be merged

3. (the “congruence closure” step) If terms 𝑡𝑖 and 𝑡𝑗 are in the same
class, merge classes containing 𝐹(𝑡𝑖) and 𝐹(𝑡𝑗) for some 𝐹 ; con-
tinue until none are left to be merged

4. If there exists a disequality predicate 𝑡𝑖 ≠ 𝑡𝑗 such that 𝑡𝑖 and 𝑡𝑗
are in the same class, return “unsatisfiable”, otherwise, return “satis-
fiable”

So, for instance, say this is your𝐹 (and this is from Kroening and Strichman,
chapter 4):

𝑥1 = 𝑥2 ∧ 𝑥2 = 𝑥3 ∧ 𝑥4 = 𝑥5 ∧ 𝑥5 ≠ 𝑥1 ∧ 𝐹(𝑥1) ≠ 𝐹(𝑥3)
The first step is to put terms in an equivalence class together if you have a
predicate saying they’re equal. So, our equivalence classes are:

{{𝑥1, 𝑥2}, {𝑥2, 𝑥3}, {𝑥4, 𝑥5}, {𝐹(𝑥1)}, {𝐹(𝑥3)}}
Now we can do step 2:

{{𝑥1, 𝑥2, 𝑥3}, {𝑥4, 𝑥5}, {𝐹(𝑥1)}, {𝐹(𝑥3)}}

7

And now step 3:

{{𝑥1, 𝑥2, 𝑥3}, {𝑥4, 𝑥5}, {𝐹(𝑥1), 𝐹 (𝑥3)}}
But since 𝐹(𝑥1) and 𝐹(𝑥3) are in the same class, and we had the predi-
cate 𝐹(𝑥1) ≠ 𝐹(𝑥3), this formula is unsatisfiable.

It turns out that this is efficient to implement because all these subsets are
disjoint, and there are data structures that are specifically designed for when
you have a bunch of disjoint subsets of a set that periodically have to be
merged. Those are known as union-find data structures because they sup-
port an operation called “union” and an operation called “find”, and you can
read about that on your own if you want to.

Proving program equivalence with EUF

There’s a lot you can express with just EUF. There are a couple examples
of this in Kroening and Strichman that under the broad heading of program
equivalence problems. I use the term “program” broadly; by program equiv-
alence problems we might mean:

• proving that two implementations of a data structure providing the
same API — maybe a reference implementation and a fast, highly
optimized implementation — are interchangeable in terms of what
they compute.

• proving equivalence of two circuits, again, maybe a slow one and a
fast one.

• proving that the output of a compiler (or a phase of a compiler) com-
putes the same thing as the input to the compiler (or phase) does.

So let’s just take the compiler correctness example from the book. Say we
have the program:

8

𝑧 = (𝑥1 + 𝑦1) ∗ (𝑥2 + 𝑦2)
And there’s a phase of compilation that flattens the code to:

𝑢1 = 𝑥1 + 𝑦1
𝑢2 = 𝑥2 + 𝑦2
𝑧 = 𝑢1 ∗ 𝑢2

which might have a more direct counterpart in assembly instructions.

So what’s the formula that we want to check validity of?

We want to show that the value assigned to 𝑧 you get when you run the
target program implies the assignment to 𝑧 you would get when your run
the source program.

𝑢1 = 𝑥1 + 𝑦1 ∧ 𝑢2 = 𝑥2 + 𝑦2 ∧ 𝑧 = 𝑢1 ∗ 𝑢2 ⟹ 𝑧 = (𝑥1 + 𝑦1) ∗
(𝑥2 + 𝑦2)
This formula is called a verification condition. Coming up with verification
conditions whose truth will imply the property we want to prove is a big part
of the work of automated software verification.

Q: By the way, why is this an implication and not an equivalence? And why
does the implication go this way and not the other way?

A: This is a little tricky. So the thing we’re trying to prove is that, whatever
value of 𝑧 the compiler produces, it’s also a legitimate value of 𝑧 according
to the source code. You can think of the source code as being a specifi-
cation and the target code as being one particular implementation of that
specification. In general (although maybe not for this toy example), there
might be multiple ways to satisfy the specification of the source code, and
the compiler might implement only one of those ways.

9

So, for example, and I’m completely making this up, the semantics of the
language might tolerate a little bit of floating point error in the computation
of 𝑧. And whatever the compiler produces has to be within those bounds.
But if the compiler wants to have tighter bounds on what it produces than
the language spec does, that’s okay. So we want a Venn diagram that looks
like this:

--
| |
| values of z that satisfy source formula |

--

And in general, when you have 𝐴 ⊂ 𝐵, that means 𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵:

--
| |
| B |

10

| | A | |
| | | |
| | | |
| -------------------------------- |

OK, so we want to prove that our verification condition is valid, but we only
have an EUF decision procedure. We can turn those into uninterpreted
functions, though.

So instead of

𝑢1 = 𝑥1 + 𝑦1 ∧ 𝑢2 = 𝑥2 + 𝑦2 ∧ 𝑧 = 𝑢1 ∗ 𝑢2 ⟹ 𝑧 = (𝑥1 + 𝑦1) ∗
(𝑥2 + 𝑦2)
we have:

𝑢1 = 𝐹(𝑥1, 𝑦1) ∧ 𝑢2 = 𝐹(𝑥2, 𝑦2) ∧ 𝑧 = 𝐺(𝑢1, 𝑢2) ⟹ 𝑧 =
𝐺(𝐹(𝑥1, 𝑦1), 𝐹 (𝑥2, 𝑦2))
which is a formula that we can convert to CNF and hand off to our EUF
decision procedure. If it’s valid according to that decision procedure, then
the original formula was valid, too.

11

	Lecture notes for: Theories: Equality and uninterpreted functions
	Agenda
	A simple decision procedure for equality logic
	Uninterpreted functions
	A decision procedure for EUF
	Proving program equivalence with EUF

