
Lecture notes for: Theories: Linear arithmetic

Lindsey Kuper

October 16, 2019

These are lecture notes to accompany sections sections 5.1-5.2 (pp. 97-
106) of Kroening and Strichman’s Decision Procedures: An Algorithmic
Point of View, second edition. See https://decomposition.al/CSE290Q-
2019-09/readings.html for the full collection of notes.

Agenda

• Flavors of linear arithmetic
• The simplex algorithm for solving linear real arithmetic formulas

Flavors of linear arithmetic

Last time we looked at the theory of equality and uninterpreted functions,
or EUF, and we talked about how one strategy for solving formulas with
functions in it, like, say, addition or multiplication, is to turn those functions
into uninterpreted functions and then use an EUF solver. This works well
for many applications. But as we saw, we lose meaning when we do this,
and sometimes we do actually want to be able to reason about arithmetic.

A linear arithmetic formula might be something like this:

2𝑧1 + 3𝑧2 ≤ 5 ∧ 𝑧2 + 5𝑧2 − 10𝑧3 ≥ 6 ∧ 𝑧1 + 𝑧3 = 3
(I don’t actually know if this is satisfiable; I’m just making something up.)

In linear arithmetic formulas, we can multiply variables by constants, but we
can’t multiply variables by each other. Hence the name “linear arithmetic”.

1

https://decomposition.al/CSE290Q-2019-09/readings.html
https://decomposition.al/CSE290Q-2019-09/readings.html


If you want to be able to multiply variables, that’s called nonlinear arithmetic.
Decision procedures do exist for various nonlinear arithmetic theories, but
those are beyond the scope of this lecture.

There are various linear arithmetic theories, depending on the domain that
the constants and variables come from. If the domain in question is real
numbers, then the theory is called linear real arithmetic.

In practice, though, when we speak of linear “real” arithmetic solvers, the
numbers involved are rational numbers. And I’ll follow that convention too:
whenever I say “linear real arithmetic” you can assume that the numbers
are actually rational unless otherwise specified.

So you can assume that that the constants in the input formula are all ratio-
nal numbers. (In my example above, they’re actually all integral numbers.)
And you can assume that the domain of variables is rational numbers, too. If
a linear arithmetic formula with rational constants is satisfiable, there will ex-
ist a satisfying assignment of variables to rational numbers. So “linear real
arithmetic” is a misnomer, and we should really say “linear rational arith-
metic” — but “linear real arithmetic” is what people say, so we’ll follow that
convention too.

(There are solvers that handle irrational numbers, but they’re beyond the
scope of this lecture, and for the software and hardware verification appli-
cations that we’re concerned with, for the most part we don’t need irrational
numbers.)

What if the domain is integers? Then the theory is called linear integer
arithmetic, sometimes also called Presburger arithmetic. (To be pedantic,
it’s the quantifier-free fragment of Presburger arithmetic.)

Q: By the way, which do you think is computationally harder to solve, linear

2



real arithmetic formulas or linear integer arithmetic formulas?

A: Linear integer arithmetic formulas are harder to solve. I found this some-
what mind-bending when I learned about it, because I’m used to thinking
that integers are easier to deal with than real numbers. I’m a programming
languages person! I’m allergic to real numbers! I like my numbers to be
integral (and ideally non-negative)!

But on further reflection, it makes sense that coming up with satisfying as-
signments that are integral would be harder than coming up with satisfying
assignments that are rational. For instance, if the formula is

5𝑧1 + 3𝑧2 = 4
then it’s pretty straightforward to come up with a satisfying assignment to
𝑧1 and 𝑧2 that’s rational. We can assign them both 0.5, for instance. But
if we need to come up with a satisfying assignment that’s integral, we can’t
do it. So yeah, solving linear integer arithmetic formulas is an NP-complete
problem, while solving linear real arithmetic formulas can be done, it turns
out, in polynomial time.

The simplex algorithm for solving linear real arithmetic for-
mulas

The algorithm that we’re going to look at for solving linear real arithmetic
formulas is called the simplex algorithm. It is, in fact, not a polynomial-time
algorithm for solving this problem, although polynomial-time algorithms do
exist. It’s worst-case exponential. But it nevertheless turns out to be the
algorithm that’s most efficient in practice on real inputs.

So you may have heard of the simplex algorithm before, not necessarily in
the context of SMT solving, but in the context of solving what are known as

3



linear programming problems, or LP problems for short.

A standard introduction to LP problems is the “diet problem”. The idea is
that you want to minimize the cost of the food you eat in a day, subject to
constraints on how many calories you need to eat and what your nutritional
requirements are.

To make it really simple, let’s assume there are three foods: corn, milk, and
bread. Each food has a certain cost per serving and a certain number of
calories per serving, and it provides a certain amount of, say, vitamin A:

• A serving of corn costs 18 cents, has 107 units of vitamin A, and is
72 calories.

• A serving of milk costs 23 cents, has 500 units of vitamin A, and is
121 calories.

• A serving of bread costs 5 cents, has 0 units of vitamin A, and is 65
calories.

This example is clearly a bit contrived, but let’s go with it.

So let’s say you want to eat between 2000 and 2250 calories in a day, and
furthermore, you want to get between 5000 and 50,000 units of vitamin A
per day.

So the question is, how many servings of each food should you eat to mini-
mize the cost?

OK, so what do the constraints look like?

So let’s set up three variables, 𝑥1, 𝑥2, and 𝑥3, which are the numbers of
servings we eat of corn, milk, and bread, respectively. So the cost of a day’s
food would be

18𝑥1 + 23𝑥2 + 5𝑥3

4

http://ftp.mcs.anl.gov/pub/tech_reports/reports/P602.pdf


and that’s the number we want to minimize. But we need to make sure we
get at least 2000 calories and no more than 2250:

2000 ≤ 72𝑥1 + 121𝑥2 + 65𝑥3 ≤ 2250
and betwen 5000 and 50,000 units of vitamin A:

5000 ≤ 107𝑥1 + 500𝑥2 ≤ 50, 000
So in general, a linear programming problem is the problem of minimizing or
maximizing a linear function called the objective function — in this case the
function is 𝑓(𝑥1, 𝑥2, 𝑥3) = 18𝑥1+23𝑥2+5𝑥3 —subject to some number
of linear constraints. Here, the linear constraints happen to be inequalities,
but they could also be equalities. For example, we could have the constraint
that you eat precisely 2250 calories a day:

72𝑥1 + 121𝑥2 + 65𝑥3 = 2250
Or we could have the constraint that you eat precisely five servings of corn:

𝑥1 = 5
So, this is an optimization problem, right? It’s a problem of minimizing or
maximizing a function.

Here’s another example. So say you’re a farmer and you have 𝐿 square
kilometers of land that you could plant with either wheat or barley or some
combination. You have 𝐹 kilograms of fertilizer and 𝑃 kilograms of pesti-
cide.

Every square kilometer of wheat requires 𝐹1 kilograms of fertilizer and 𝑃1
kilograms of pesticide, while every square kilometer of barley requires 𝐹2
kilograms of fertilizer and 𝑃2 kilograms of pesticide.

Let 𝑆1 be the selling price of wheat per square kilometer, and 𝑆2 be the

5



selling price of barley. If we denote the area of land planted with wheat and
barley by 𝑥1 and 𝑥2 respectively, then profit can be maximized by choosing
optimal values for 𝑥1 and 𝑥2.

So in other words, the function we want to maximize is

𝑆1𝑥1 + 𝑆2𝑥2

subject to the constraints on how much land we have:

𝑥1 + 𝑥2 ≤ 𝐿
and on how much fertilizer and pesticide we have:

𝐹1𝑥1 + 𝐹2𝑥2 ≤ 𝐹
𝑃1𝑥1 + 𝑃2𝑥2 ≤ 𝑃
Q: Any other constraints we need?

A: We can’t plant a negative area with a crop, so we have some constraints
that 𝑥1 and 𝑥2 have to be nonnegative:

𝑥1 ≥ 0
𝑥2 ≥ 0
This is another optimization problem, right? A problem of maximizing a
function. And the simplex algorithm is a recipe for doing that.

It’s an algorithm that you can carry out by hand if you want to, or you can use
an off-the-shelf LP solver that uses some version of the simplex algorithm
to find an optimal solution. An open-source LP solver is GLPK, for example;
a closed-source commercial one is Gurobi.

Q: But wait a second. This course isn’t about optimization problems, it’s

6



about decision problems, right? We just want to know if formulas are satis-
fiable or not. We don’t care if they’re a little bit satisfiable or a lot satisfiable;
we just want to know if they’re satisfiable. So why is the simplex algorithm
of interest to us?

As it’s normally presented, the simplex algorithm has two phases. The first
phase involves finding what’s called a feasible solution to the problem, in
which all the constraints are satisfied. For instance, finding a feasible solu-
tion to our diet problem would mean coming up with values for 𝑥1, 𝑥2, and
𝑥3 such that all these linear constraints are true.

Once that’s done, you can move onto the second phase of the algorithm,
which involves iterating toward an optimal solution that minimizes the ob-
jective function.

Many presentations of the simplex algorithm assume that you already have
a feasible solution, and they only deal with optimizing the objective function.
Because I don’t actually have time to teach it today, I’m going to ask you to
trust me that once you know that a feasible solution exists, then it’s possible
to optimize it. So just assume, for today, that there exists an algorithm for
turning feasible solutions into optimal ones.

For many real-world LP problems, assuming you have a feasible solution to
begin with is a realistic assumption to make. For instance, suppose you’re
the farmer from the example problem above. Whatever you’re already doing
is a feasible solution: assuming you’ve set up the problem correctly, the
amounts of fertilizer, pesticide, and land you’re using already fall within the
constraints, because it would be impossible for you to do otherwise (for
instance, you can’t use more land than exists, or put a negative amount
of fertilizer on it). Of course, what you’re currently doing is probably not
optimal, which is why you need the simplex algorithm! But at least you have

7



an initial feasible solution from which to start iterating toward an optimal one.

So, many presentations of the simplex algorithm focus on the second phase
only. But we want to do the opposite: we only care about coming up with
the feasible solution in the first place. In other words, we only care about
phase one of the algorithm. And that problem really is a decision problem.
It’s a yes-or-no question: is there a feasible solution, or isn’t there?

And by this point you might have realized that the problem of finding an
initial feasible solution to a linear programming problem coincides exactly
with the problem of finding a satisfying assignment to a linear real arithmetic
formula that consists of a conjunction of linear constraints. For instance, for
our diet problem, the formula would be:

(72𝑥1 +121𝑥2 +65𝑥3 ≥ 2000)∧(72𝑥1 +121𝑥2 +65𝑥3 ≤ 2250)∧
(107𝑥1 + 500𝑥2 ≥ 5000) ∧ (107𝑥1 + 500𝑥2 ≤ 5000)
Determining whether this formula is satisfiable is exactly the same problem
as determining if there is a feasible solution to the linear programming prob-
lem. (Notice that we left the objective function out of the formula, because
we don’t need it.)

Strangely enough, it turns out that you can use essentially the same al-
gorithm that you use for phase two of the simplex algorithm, which is the
optimization part, to carry out phase one, which is the decision part. You
just have to turn the decision problem into an optimization problem.

OK. So in particular we’re going to be talking about LP problems in a partic-
ular form.

maximize 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛

subject to some number of constraints that are all of the form

8



𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 ≤ 𝑏
plus some special constraints called nonnegativity constraints on all the
variables:

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑑𝑜𝑡𝑠, 𝑥𝑛 ≥ 0
(The nonnegativity constraints are like the ones that ensure that we don’t
plant a negative area with wheat or barley.)

Now, all we care about is whether this problem has a feasible solution. We
don’t care about the objective function. So we’re going to throw away that
objective function, and instead we’re going to make a slight tweak to our
constraints and throw in a new variable called 𝑥0.

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 − 𝑥0 ≤ 𝑏
And we’ll throw in a new nonnegativity constraint on 𝑥0 also:

𝑥0 ≥ 0
This new problem is called an auxiliary problem.

So 𝑥0 can be zero, but it can’t be nonnegative. Now the problem becomes:
minimize 𝑥0. We want 𝑥0 to be zero, because we can see that the original
problem has a feasible solution if and only if this new problem has a solution
where 𝑥0 = 0.
So we turned the decision problem of finding a feasible solution into the
optimization problem of minimizing 𝑥0.

Q: Now, the key question: Does the auxiliary problem have a feasible solu-
tion?

A: Yes, it does! We just set all the 𝑥1 through 𝑥𝑛 to 0 and then we make 𝑥0

9



something sufficiently large. So we have a feasible solution to the auxiliary
problem, and now we just need to iterate toward an optimal one where 𝑥0
is zero. But we have a way to get that! We just use the algorithm that I
mentioned earlier that I asked you to trust me exists!

By the way, my way of explaining this is different from what Kroening and
Strichman do. They formulate the problem differently, and they show what
they call the “general simplex” algorithm, where you don’t use an objective
function at all. But I want to show it in a way that I understand better, and is
also closer to what’s presented in the Reluplex paper which we’ll read later
in the course. Your mileage may vary.

10


	Lecture notes for: Theories: Linear arithmetic
	Agenda
	Flavors of linear arithmetic
	The simplex algorithm for solving linear real arithmetic formulas


