
81

A Survey of Multitier Programming

PASCAL WEISENBURGER, JOHANNES WIRTH, and GUIDO SALVANESCHI,

Technische Universität Darmstadt, Germany

Multitier programming deals with developing the components that pertain to different tiers in the system (e.g.,

client and server), mixing them in the same compilation unit. In this paradigm, the code for different tiers is

then either generated at run time or it results from the compiler splitting the codebase into components that

belong to different tiers based on user annotations, static analysis, types, or a combination of these. In the Web

context, multitier languages aim at reducing the distinction between client and server code, by translating

the code that is to be executed on the clients to JavaScript or by executing JavaScript on the server, too.

Ultimately, the goal of the multitier approach is to improve program comprehension, simplify maintenance

and enable formal reasoning about the properties of the whole distributed application.

A number of multitier research languages have been proposed over the last decade, which support vari-

ous degrees of multitier programming and explore different design tradeoffs. In this article, we provide an

overview of the existing solutions, discuss their positioning in the design space, and outline open research

problems.

CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering

→ Distributed programming languages; Domain specific languages; • Theory of computation → Dis-

tributed computing models;

Additional Key Words and Phrases: Multitier languages, tierless languages, distributed programming

ACM Reference format:

Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. 2020. A Survey of Multitier Programming.

ACM Comput. Surv. 53, 4, Article 81 (September 2020), 35 pages.

https://doi.org/10.1145/3397495

1 INTRODUCTION

Developing distributed systems is widely recognized as a complex and error-prone task. A num-
ber of aspects complicate programming distributed software, including concurrent execution on
different nodes, the need to adopt multiple languages or runtime environments (e.g., JavaScript
for the client and Java for the server), and the need to properly handle complex communication

This work has been co-funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1053-

210487104 and SFB 1119-236615297, by the DFG projects 322196540 and 383964710, by the LOEWE initiative (Hesse, Ger-

many) within the emergenCITY centre and within the Software-Factory 4.0 project and by the German Federal Ministry

of Education and Research and the Hessian State Ministry for Higher Education, Research and the Arts within their joint

support of the National Research Center for Applied Cybersecurity ATHENE.

Authors’ addresses: P. Weisenburger, J. Wirth, and G. Salvaneschi, Technische Universität Darmstadt, Hochschulstraße 10,

Darmstadt, Hessen, 64289, Germany; email: {weisenburger; salvaneschi}@cs.tu-darmstadt.de; johannes-wirth@postco.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2020/09-ART81 $15.00

https://doi.org/10.1145/3397495

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/3397495
mailto:permissions@acm.org
https://doi.org/10.1145/3397495

81:2 P. Weisenburger et al.

patterns considering synchronicity/asynchronicity, consistency as well as low-level concerns such
as data serialization and format conversion. Over the years, developers and practitioners have
tackled these challenges with methods that operate at different levels. Various middlewares ab-
stract over message propagation (e.g., Linda [48]). Primitives for remote communication (RPC, e.g.,
CORBA [50], RMI [107]) give programmers the illusion of distribution transparency. Decoupling
in the software architecture improves concurrency and fault tolerance (e.g., the Actor model [56]).
Finally, out-of-the-box specialized frameworks can manage fault recovery, scheduling and distri-
bution automatically (e.g., MapReduce [38]).

A radically innovative solution has been put forward by the so-called multitier programming

(MT) approach (sometimes referred to as tierless programming). MT programming consists of de-
veloping the components that pertain to different tiers in the system (e.g., client and server), mixing
them in the same compilation unit. Code for different tiers is generated at run time or split by the
compiler into components that belong to different tiers based on user annotations and static anal-
ysis, types, or a combination of these.

A number of MT research languages have been proposed over the last decade, demonstrating the
advantages of this paradigm (e.g., [12, 28, 32, 110]), including improving software comprehension,
enhancing software design, enabling formal reasoning and ameliorating maintenance. In parallel,
a number of industrial solutions include concepts from MT programming (e.g., [9], [13], [119]),
showing that this approach has great potential in practice.

The success of the MT paradigm has led to a variety of solutions that occupy different points
in the design space. These solutions mix techniques (e.g., compile time vs. run time splitting) and
design choices (e.g., placement of compilation units vs. placement of single functions) that often de-
pend on the application domain as well as on the software application stack. As a result, it is hard to
get a complete picture of the existing tradeoffs based on a precise taxonomy of the available design
decisions. In this articles, we fill this gap, providing researchers and practitioners with an overview
of MT languages and of the fundamental design decisions that this paradigm entails. After pre-
senting a selection of influential MT languages, we systematically analyze existing MT approaches
along various axes, highlighting the most important achievements for each language. Finally, we
provide an overview of related research areas and of the open research challenges in the field.

This article is structured as follows: Section 2 introduces MT programming, Section 3 presents
concrete examples of MT programming languages to implement a reference application, Section 4
discusses existing MT languages according to our analysis axes, Section 5 provides an overview
of open research issues in the area, Section 6 presents approaches that are closely related to MT
programming, and Section 7 concludes.

2 MULTITIER PROGRAMMING IN A NUTSHELL

The different components of a distributed application are executed on different tiers, where each
tier can run on a different machine in a network. For example, a 3-tier (or 3-layer) application is
organized into three major parts—usually presentation, application processing, and data manage-

ment —residing in different network locations [19]. One of the advantages of this approach is that,
by organizing a system into tiers, the functionality that is encapsulated into one of the tiers can
be modified independently, instead of redesigning the entire application.

As a result of this architectural choice, however, a crosscutting functionality that belongs to
multiple tiers is separated among several compilation units. For example, in the Web setting,
functionality is often scattered across client and server. Also, in many cases, each layer is im-
plemented in a different programming language depending on the technology of the underlying
layer, e.g., JavaScript for the browser-based interface, Java for the server-side application logic,
and SQL for the database.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:3

Fig. 1. Multitier Programming.

In an MT programming language, a single language can be used to program different tiers, often
adopting different compilation backends based on the target tier (e.g., JavaScript for the browser,
Java for the server). As a result, a functionality that spans over multiple tiers can be developed
within the same compilation unit. The compiler takes care of generating multiple deployable units
(Figure 1) starting from a single MT program as well as of generating the communication code
that is required for such modules to interact during program execution.

2.1 Benefits of Multitier Programming

In this section, we provide an overview of the main advantages offered by the MT language design.
We report the main claims found in literature and refer to the sources where these are discussed.

2.1.1 Higher Abstraction Level. An important advantage of MT programming is that it enables
abstracting over a number of low-level details relevant to programming distributed systems. As a
result, software development is simplified and programmers can work at a higher level of abstrac-
tion [132]. There are different aspects to consider. First, developers do not face the issue of dealing
with error-prone aspects like network communication, serialization, and data format conversions
between different tiers [101]. Second, with MT programming, there is no need to design the inter-
tier APIs, for example specifying the REST API a server exposes to clients. The technologies used
for inter-tier communication are usually transparent to the developer [110] and a detail of the
compilation approach.

2.1.2 Improved Software Design. In many distributed applications, the boundaries between
hosts and the boundaries between functionalities do not necessarily coincide, i.e., a single func-
tionality can span multiple locations and a single location can host multiple functionalities. For
example, retrieving a list of recent emails requires a search on the server, filtering the result on the
client and displaying the result. All these operations conceptually pertain to the same functionality.
Programming each location separately may result in two design issues. First, it can compromise
modularity because functionality (e.g., email retrieval) is scattered across the codebases of differ-
ent hosts. Second, it is error-prone because of code repetition. For example, encryption requires
encrypting and decrypting data on both ends of the communication channel, and the associated
functions need to be available on both the client and the server. In contrast, MT programming
allows for developing a functionality once and then place it where required [40].

2.1.3 Formal Reasoning. Formal reasoning can benefit from MT design because MT languages
model distributed applications as a whole as well as reify a number of aspects of distributed soft-
ware that are usually left implicit, like placement, components of the distributed system, and the
boundaries among tiers. Hence, it becomes easier to formally reason about software properties
considering the whole system at once instead of each component in isolation. For example, re-
searchers have developed methods to reason about concurrency [90] and security [10] considering
information flow in the whole system. Also, performance can be improved by eliminating dynamic

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:4 P. Weisenburger et al.

references of global pointers [25]. Finally, researchers considered domain-specific properties, such
as reachability in software defined networks via verification [89].

2.1.4 Code Maintenance. MT programming simplifies the process of modifying an existing soft-
ware system. Two cases are particularly interesting for MT. First, migrating functionality among
different tiers does not require a complete rewrite in a different language [49]. For example, vali-
dating user input should already happen on the client-side to improve usability and must happen
on the server to enforce input validation before further processing. Both validation functions share
the same code. Second, it is easier to migrate an application among different platforms [43]. For
example, in principle, the client-side logic of a client–server desktop application can be migrated
to the Web just by changing the compilation target of the client side to JavaScript.

2.1.5 Program Comprehension. Program comprehension refers to the complexity (time, re-
quired expertise) that a developer faces to come up with a correct mental model of the behav-
ior of a program [116]. A crucial advantage of MT programming is that it simplifies reasoning
about data flow over multiple hosts because data flows that belong to a certain functionality are
not interrupted by the modularization across the tier axis and by the details of communication
code—simplifying development as well as debugging [81]. We are, however, not aware of empiri-
cal studies or controlled experiments that measure the advantage of MT programming in terms of
program comprehension.

2.2 An Overview of Multitier Languages

In this survey, we compare MT languages, i.e., languages that support implementing different tiers
of a distributed system within a single compilation unit. This survey focuses on homogeneous MT
programming, where tiers follow the same model of computation and have similar processing ca-
pabilities. Databases are an example for a tier with a computational model that is typically different
from the one of the tier that accesses the database, such as a web server. For MT languages that
support heterogeneous tiers, such as databases, we only briefly describe the language features that
are supported. Table 1 lists the MT approaches we discuss systematically and related approaches
on which we touch to point out their connection to MT programming.

Multitier Languages. In this article, we first show the implementation of a small application (Sec-
tion 3) in a representative selection of MT languages. These include two languages that pioneered
MT programming for the web (Hop/Hop.js and Links), two recent approaches focusing on web de-
velopment (Ur/Web and Eliom), an approach that also supports more general distributed systems
than web applications (ScalaLoci) and Google’s GWT, an industrial solution for cross compilation
to different tiers, that, however, provides no specific MT abstractions. We then conduct a system-
atic feature comparison (Section 4) among homogeneous MT languages (first segment of Table 1).

In this survey, we also include programming frameworks that target distributed applications
where several tiers are developed together, using the same language (second segment of Table 1).
For example, such frameworks reuse existing (non-MT) languages and communication libraries,
compiling to JavaScript for the client-side (GWT), using JavaScript for both the client and the
server (Meteor) or use an external configuration file for specifying the splitting (J-Orchestra). In
these languages, the presence of different tiers is clearly visible to the programmer either in the
form of configuration files or source annotations.

Related Approaches. In this survey, we also elaborate on closely related approaches (third seg-
ment of Table 1) that do not completely fit the programming model of the aforementioned MT
languages and the taxonomy of our feature comparison. Hence, we do not classify them system-
atically but highlight their connection to MT programming where they relate to the discussed MT
aspects. Such approaches (a) do not express tiers as part of their language abstractions because the

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:5

Table 1. Overview of MT Languages

Language Short Description

Hop/Hop.js [110, 111] Dynamically typed language for developing web applications with a client–server
communication scheme and asynchronous callbacks.

Links [32, 46] Statically typed language that covers the client tier, the server tier and the access to
the database tier. It uses remote calls and message passing for client–server
communication.

Ur/Web [28] ML-like language with support for type-safe metaprogramming that provides
communication from client to server through remote procedure calls and from the
server to the client through message-passing channels.

Eliom/Ocsigen [9, 101] OCaml dialect that extends the ML module system to support MT modules
featuring separate compilation; used in the Ocsigen project.

ScalaLoci [132] Supports generic distributed systems, not only web applications, thanks to
placement types; features remote procedures and reactive programming
abstractions for remote communication.

StiP.js [95, 96] Allows developers to annotate the code that belongs to the client or to the server;
slicing detects the dependencies between the annotated fragment and the rest of
the code.

Gavial [104, 105] Domain-specific language embedded into Scala that provides reactive
programming abstractions for cross-tier communication.

Opa [102] Statically typed language that supports remote communication via remote
procedure calls and message-passing channels.

AmbientTalk/R [24, 39] Targets mobile applications with loosely coupled devices and provides reactive
programming abstractions on top of a publish–subscribe middleware.

ML5 [88] Represents different tiers by different possible worlds, as known from modal logic.

WebSharper [13] Allows developers to specify client-side members and members that are callable
remotely.

Haste [41] Uses monadic computations wrapping client and server code into different monads
and provides explicit remote calls.

Fun [135] Enables automatic synchronization of data across web clients without manually
implementing the communication with the server.

Koka [73] Supports splitting code among tiers using a type and effect system by associating
different effects to different tiers.

Multi-Tier Calculus [90] Provides a formal model to reason about the splitting of MT code into a client and a
server part and the communication between both parts through message channels.

Swift [30] Splits an application into client and server programs based on the flow of private
data, making sure that private data does not flow to untrusted clients.

Volta [81] Uses attributes to annotate classes with the tier they belong to, automatically
converting cross-tier method calls to remote invocations.

GWT [64] Compiles Java to JavaScript for the client and provides remote procedures for
client–server communication; developed at Google.

Meteor [119] A programming framework to use JavaScript for both the client and the server
code; provides remote procedures, publish–subscribe abstractions and shared state.

J-Orchestra [122] Uses configuration files to assign Java classes to tiers, rewriting the Java bytecode
to turn method invocations into remote calls.

(Continued)

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:6 P. Weisenburger et al.

Table 1. Continued

Language Short Description

Hiphop [12] Extends Hop with synchronous data flows, focusing on guarantees on time and
memory bounds.

Distributed Orc [121] The runtime optimizes the placements of values; it provides location transparency
by giving local and remote operations the same semantics, which allows for
handling asynchrony and failures uniformly.

Jif/split [141] Splits a program into tiers based on the flow of private data, making sure that
private data do not flow to another tier.

Fission [52] Dynamically splits a program execution into client-side and server-side execution
based on the flow of private data, making sure that private data does not flow to
untrusted clients.

SIF [31] Checks the flow of private data in a web application, making sure that private data
does not flow to untrusted clients.

WebDSL [49] Domain-specific language for specifying the data model of web applications and
the web pages to view and edit data model objects.

Acute [113] Supports type-safe marshalling for remote interaction, versioning of program code
and dynamic code reloading, leaving the network communication mechanism to
libraries.

Mobl [55] Supports different concerns of developing the client-side of web applications, such
as the data model, the application logic and the user interface.

High-Level Abstractions for
Web Programming [106]

Provides a Scala EDSL that captures common tasks performed in web applications,
e.g., defining DOM fragments.

code is assigned to tiers transparently (Distributed Orc, Jif/split, and Fission). In this group, we also
include Hiphop, where the language extends an MT language but the extension itself does not add
any MT abstraction, and SIF, which uses GWT for JavaScript compilation as well as a client run-
time library, and WebDSL, where the language only represents the state of the data model. Other
approaches do not completely fit the MT programming model that we consider because they (b) do
not include cross-tier communication, intentionally leaving remote communication support to li-
braries, such as Acute and several languages for web applications Mobl, High-Level Abstractions
for Web Programming.

MT development shares with cross-compilation the goal of abstracting over different tiers as
cross compilation abstracts over the heterogeneity of different target platforms. Cross-compilers
include, e.g., Haxe or the Kotlin language, the JSweet Java to JavaScript compiler, the Bridge.NET
and the SharpKit C# to JavaScript compilers, and the Scala.js Scala to JavaScript compiler. Yet, these
solutions do not offer specific language-level support for distribution and remote communication.
This survey discusses the difference between cross-compilers and MT languages, but it does not
consider cross-compilers in detail.

3 A GLIMPSE OF MULTITIER LANGUAGES

In this section, we present languages that have pioneered MT programming and/or have been very
influential in recent years. To provide an intuition of how MT programming looks like using those
languages, we present the same example implemented in each language. As an example, we show
an Echo client–server application: The client sends a message to the server and the server returns
the same message to the client, where it is appended to a list of received messages. The application
is simple and self-contained, and—despite all the limitations of short and synthetic examples—it
gives us the chance to demonstrate different MT languages side by side.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:7

Listing 1. Echo application in Hop.js.

3.1 Hop

Hop [110] is a dynamically typed Scheme-based language. It follows the traditional approach of
modeling communication between client and server using asynchronous callbacks for received
messages and return values. JavaScript code is generated at run time and passed to the client. A
recent line of work has ported the results of Hop to a JavaScript-based framework, Hop.js [111],
which allows using JavaScript to program both the client and the server side.

Listing 1 shows the Echo application implemented in Hop.js. HTML can be embedded directly
in Hop code. HTML generated on the server (Line 2–14) is passed to the client. HTML generated
on the client can be added to the page using the standard DOM API (Line 6).

Hop supports bidirectional communication between a running server and a running client in-
stance through its standard library. In the Echo application, the client connects to the WebSocket
server through the standard HTML5 API (Line 5) and sends the current input value (Line 10). The
server opens a WebSocket server (Line 17) that returns the value back to the client (Line 20).

The language allows the definition of services, which are executed on the server and produce a
value that is returned to the client that invoked the service. For example, the echo service (Line 1)
produces the HTML page served to the web client of the Echo application. Thus, the code in a
service block is executed on the server.

Because of the ~{...} notation, the code for the onload (Line 4) and onclick (Line 10) han-
dlers is not immediately executed but the server generates the code for later execution on the
client. On the other hand, the ${...} notation escapes one level of program generation. The ex-
pressions hop.port (Line 5), event.data (Line 6) and input (Lines 9 and 10) are evaluated by the
outer server program and the values to which they evaluate are injected into the generated client
program. Hop supports full stage programming, i.e., ~{...} expressions can be arbitrarily nested
such that not only server-side programs can generate client-side programs but also client-side
programs are able to generate other client-side programs.

3.2 Links

Links [32] is a statically typed language that translates to SQL for the database tier and to JavaScript
for the web browser. The latter is a technique, which was pioneered by the typed query system

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:8 P. Weisenburger et al.

Listing 2. Echo application in Links.

Kleisli [138] and adopted by Microsoft LINQ [124]. It allows embedding statically typed database
queries in Links. Recent work extended Links with algebraic effects [57], provenance tracking [42]
and session types [78] with support for exception handling [46]. Links’ Model-View-Update archi-
tecture [45] integrates session typing and GUI development.

Listing 2 shows the Echo application implemented in Links. Links uses annotations on functions
to specify whether they run on the client or on the server (Line 1 and 5). Upon request from the
client, the server executes the main function (Line 18), which constructs the code that is sent to the
client. Links allows embedding XML code (Lines 7–15). The l:name attribute (Line 10) declares an
identifier to which the value of the input field is bound and which can be used elsewhere (Line 9).
The code to be executed for the l:onsubmit handler (Line 9) is not immediately executed but
compiled to JavaScript for client-side execution. Curly braces indicate Links code embedded into
XML. The l:onsubmit handler sends the current input value item to the server by calling echo.
The item is returned by the server and appended to the list of received items using standard DOM
APIs. The call to the server (Line 9) does not block the client. Instead, the continuation on the
client is invoked when the result of the call is available. Client–server interaction is based on
resumption passing style: Using continuation passing style transformation and defunctionalization,
remote calls are implemented by passing the name of a function for the continuation and the data
needed to continue the computation. Rather than of constructing HTML forms manually, like in
the example, Links further supports formlets [33], an abstraction for composing HTML forms.

To access the database tier, Links features database expressions to represent database connec-
tions. For example, to store the list of received items in a server-side database, the expression
table "items" with (item: String) from database "list" refers to the items table in the
list database that contains records with a single item string field. Links supports language con-
structs for querying and updating databases—such as iterating over records using for, filtering
using where clauses, sorting using orderby or applying functions on lists, such as take and drop,
to datasets—which are compiled into equivalent SQL statements.

3.3 Ur/Web

Ur/Web [28] is a language in the style of ML, featuring an expressive type system to support
type-safe metaprogramming. The type system ensures correctness of a broad range of proper-
ties including (i) validity of generated HTML code, (ii) the types of values of HTML form fields

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:9

Listing 3. Echo application in Ur/Web.

matching the types expected by their handlers or the types of columns of a database table, (iii) va-
lidity of SQL queries, (iv) lack of dead intra-application links, and (v) prevention of code injection
attacks. Remote procedure calls are executed atomically, with Ur/Web guaranteeing the absence
of observable interleaving operations.

Listing 3 shows the Echo application implemented in Ur/Web. Ur/Web allows embedding XML
code using <xml>...</xml> (Lines 6 and 7). The {...} notation embeds Ur/Web code into XML.
{[...]} evaluates an expression and embeds its value as a literal. Ur/Web supports functional
reactive programming for client-side user interfaces. The example defines an item source (Line 9),
whose value is automatically updated to the value of the input field (Line 13) when it is changed
through user input, i.e., it is reactive. The list source (Line 10) holds the list of received items from
the echo server. Sources, time-changing input values, and signals, time-changing derived values,
are Ur/Web’s reactive abstractions, i.e., signals recompute their values automatically when the
signals or sources from which they are derived change their value, facilitating automatic change
propagation. Upon clicking the button, the current value of list (Line 15) and item is accessed
(Line 16), then a remote procedure call to the server’s echo function is invoked (Line 17) and list
is updated with the item returned from the server (Line 18). To automatically reflect changes in
the user interface, a signal is bound to the signal attribute of the HTML pseudo-element <dyn>
(Line 22). The signal uses the mkhtml function (Line 24, defined in Line 4), which creates HTML
list elements. In addition to remote procedure calls—which initiate the communication from client
to server – Ur/Web supports typed message-passing channels, which the server can use to push
messages to the client.

Ur/Web integrates a domain-specific embedding of SQL for accessing the database tier with
clauses such as SELECT, FROM or ORDERBY. For example, a set of database records storing the
list of received items is specified by a table items : { item : string } declaration. Such table

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:10 P. Weisenburger et al.

Listing 4. Echo application in Eliom.

declarations can be private to a module using an ML-style module system for encapsulating data-
base tables.

3.4 Eliom

Eliom [101] is an OCaml dialect designed in the context of the Ocsigen project [9] for develop-
ing client–server web applications. Ocsigen further provides mechanisms to support a number of
practical features necessary in modern applications, including session management and bidirec-
tional client–server communication through its standard library.

Listing 4 shows the Echo application in Eliom. Eliom extends let-bindings with section annota-

tions %client, %server and %shared —the latter indicates code that runs on both the client and
the server. The application starts with a call to Echo_app.register (Line 15). Eliom supports
cross-tier reactive values: The application generates a server-side event (Line 18) and a corre-
sponding client-side event (Line 19), which automatically propagates changes from the server to
the client. A reactive list (Line 20) holds the items received from the server. Mapping the list pro-
duces a list of corresponding HTML elements (Line 21), which can directly be inserted into the
generated HTML code (Line 26). Eliom supports a DSL for HTML, providing functions of the same
name as the HTML element they generate. Server-side code can contain nested fragments to be run
on the client ([%client ...], Line 23) or to be run on both the client and the server ([%shared
...], Line 21). Eliom uses injections (prefixed by ~%) to access values on the client side that were
computed on the server. The client-side representation of the event item_down is injected into a
client fragment to extend the reactive list with every item returned from the server (Line 25). The
make_input function (Line 5) generates the main user interface, which processes the stream of
button clicks (Line 10) and fires the up event for every item (Line 11). To fire the server-side up
event from the client-side, we inject the event via ~%up into the client fragment.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:11

Listing 5. Echo application in GWT.

3.5 Google Web Toolkit (GWT)

GWT [64] is an open source project developed at Google. Its design has been driven by a pragmatic
approach, mapping traditional Java programs to web applications. A GWT program is a Java Swing
application except that the source code is compiled to JavaScript for the client side and to Java
bytecode for the server side. Compared to fully-fledged MT programming, distributed code in
GWT is not developed in a single compilation unit nor necessarily in the same language. Besides
Java, in practice, GUIs often refer to static components in external HTML or XML files. Client and
server code reside in different Java packages. GWT provides RPC library support for cross-tier
communication.

Listing 5 shows the Echo application implemented in GWT. For the sake of brevity, we leave out
the external HTML file. The application adds an input field (Line d.9) and a button (Line d.10) to
container elements defined in the HTML file and registers a handler for click events on the button
(Line d.12). When the button is clicked, the echo method of the echoService is invoked with the
current item and a callback—to be executed when the remote call returns. When an item is returned
by the remote call, it is added to the list of received items (Line d.17). GWT requires developers
to specify both the interface implemented by the service (Line a.2) and the service interface for
invoking methods remotely using a callback (Line b.2). The implementation of the echo service
(Line c.2) simply returns the item sent from the client.

3.6 ScalaLoci

ScalaLoci [132] is a language that targets generic distributed systems rather than the Web only,
i.e., it is not restricted to a client–server architecture. To this end, ScalaLoci supports peer types

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:12 P. Weisenburger et al.

Listing 6. Echo application in ScalaLoci.

to encode the different locations at the type level. Placement types are used to assign locations to
data and computations. ScalaLoci supports multitier reactives—language abstractions for reactive
programming that are placed on specific locations—for composing data flows cross different peers.

Listing 6 shows the Echo application implemented in ScalaLoci. The application first defines an
input field (Line 11) using the ScalaTags library [76]. The value of this input field is used in the click
event handler of a button (Line 15) to fire the message event with the current value of the input
field. The value is then propagated to the server (Line 6) and back to the client (Line 9). On the
client, the values of the event are accumulated using the list function and mapped to an HTML
list (Line 10). This list is then used in the HTML code (Line 16) to display the previous inputs.

4 ANALYSIS

In this section, we systematically analyze existing MT solutions along various axes. We consider
the following dimensions:

• Degrees of MT programming refers to the amount of MT abstractions supported by the lan-
guage. At one extreme of the spectrum, we find languages with dedicated MT abstractions
for data sharing among tiers and for communication. At the other end of the spectrum lie
languages where part of the codebase can simply be cross-compiled to a different target
platform (e.g., Java to JavaScript) to enhance the interoperability between tiers but do not
provide specific MT abstractions.

• Placement strategy describes how data and computations in the program are assigned to the
hosts in the distributed system, e.g., based on programmers’ decisions or based on automatic
optimization.

• Placement specification and granularity in MT languages refers to the means offered for
programmers to specify placement (e.g., code annotations, configuration files) and their
granularity level (e.g., per function, per class).

• Communication abstractions for communication among tiers are a crucial aspect in MT pro-
gramming since MT programming brings the code that belongs to different tiers to the same
compilation unit. MT approaches provide dedicated abstractions to simplify implementing
remote communication which differ considerably among languages.

• Formalization of MT languages considers the approach used to formally define the semantics
of the language and formally prove properties about programs.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:13

Table 2. Degrees of MT Programming

Compilation Approach Distribution Approach

Distribution No Distribution Abstractions

Multitier Transparent

Cross Compilation Hop Haxe
Links Kotlin
Opa JSweet
Ur/Web Bridge.NET
Eliom/Ocsigen SharpKit
Gavial Scala.js
ML5 WebDSL
ScalaLoci Mobl
WebSharper High-Level Abstractions
Haste for Web Programming
Swift
Volta
GWT

Uniform Compilation Hop.js Distributed Orc Hiphop
StiP.js Jif/split SIF
AmbientTalk/R Fission Acute
Fun (traditional languages)
Koka
Multi-Tier Calculus
J-Orchestra
Meteor

• Distribution topologies describe the variety of distributed architectures [47] (e.g., client–
server, peer-to-peer) that a language supports.

4.1 Degrees of MT Programming

Several programming frameworks for distributed systems have been influenced, to various de-
grees, by ideas from MT. In this section, we compare languages where MT programming is sup-
ported by dedicated abstractions, either by explicitly referring to placement in the language or
by using scoping in the same compilation unit to define remote communication, and approaches
that share similar goals to MT programming using compilation techniques that support different
targets (and tiers), but do not expose distribution as a language feature to the developer. Table 2
provides an overview of existing solutions concerning the degree of supported MT programming.
Specifically, it considers support for cross compilation and the supported language features for
distribution.

Multitier distribution provides a programming model that defines different tiers and offers
abstractions for developers to control the distribution.

Transparent distribution does not support code assignment to tiers as a reified language con-
struct. Splitting into tiers is computed transparently by the compiler or the runtime and
not part of the programming model.

No distribution abstractions do not provide language features specific to the distribution of
programs.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:14 P. Weisenburger et al.

When running distributed applications on different machines, approaches related to MT
programming either assume the same execution environment, where all tiers can be supported
by a uniform compilation scheme, or employ a cross-compilation approach to support different
target platforms. Cross-compilers can be used to support the development of distributed systems
(e.g., by compiling client-side code to JavaScript) but still require manual distribution of code and
do not offer abstractions for remote communication among components as MT languages do.
Traditional languages, falling into the bottom right corner of Table 2, neither support distribution
nor cross compilation. Hiphop [12] does not provide its own support for distribution but relies
on Hop’s [110] MT primitives. SIF [31] uses information flow control to ensure that private data
does not flow to untrusted clients. It is implemented on top of Java Servlets, which respond to
requests sent by web clients. Acute [113] is an OCaml extension that, although it does not support
distribution or cross compilation, provides type-safe marshalling for accessing resources remotely
based on transmitting type information at run time for developing distributed systems.

We provide examples for the multitier category, which is extensively discussed in the rest of
this article, and systematically analyze the second and third approach using transparent splitting
by the compiler or manual splitting and cross-compilation, respectively.

4.1.1 Dedicated MT Programming Abstractions. MT languages provide abstractions that reify
the placement of data and computations and allow programmers to directly refer to these con-
cepts in their programs. In Hop.js [111], inside the same expression, it is possible to switch be-
tween server and client code with ~{...} and ${...}, which can be arbitrarily nested. Similarly,
the Ur/Web [28] language provides the {...} escape operator. In ScalaLoci [132], placement is
part of the type system (placement types) and the type checker can reason about resource location
in the application. Eliom’s [101] placement annotations %client, %server and %shared allow
developers to allocate resources in the program at the granularity of variable declarations. Simi-
larly, Links [32] provides a client and a server annotation to indicate functions that should be
executed on the client or the server, respectively.

The MT languages above hide the mismatch between the different platforms underlying each
tier, abstracting over data representation, serialization and network protocols, enabling the com-
bination of code that belongs to different tiers within the same compilation unit. In addition, MT
concepts are reified in the language in the sense that language abstractions enable developers to
refer to tiers explicitly.

4.1.2 Compilers for Multitier Programming. Transparent distribution approaches enable using a
single language for different tiers and support compilation to tier-specific code, but do not provide
specific abstractions for MT programming. Splitting a program into different tiers based on security
concerns (Jif/split [141], Fission [52]) adopts information flow control techniques to ensure that
private data does not leak to untrusted tiers. Distributed Orc [121] automatically optimizes the
distribution of values at runtime to minimize communication cost.

Approaches that add compilation to a different platform for existing general-purpose languages
have been proposed by different vendors and organizations, targeting various languages and pro-
gramming platforms, e.g., the JSweet Java to JavaScript compiler, the Bridge.NET and the SharpKit
C# to JavaScript compilers and the Scala.js Scala to JavaScript compiler. Haxe [43] is a cross-
platform toolkit based on the statically typed object-oriented Haxe language that compiles to
JavaScript, PHP, C++, Java, C#, Python and Lua. The statically typed language Kotlin [62] for multi-
platform applications targets the JVM, Android, JavaScript and native code. Such approaches do
not support automatic separation into tiers – the developer has to keep the code for different tiers
separate, e.g., in different folders. Remote communication APIs are provided by libraries depend-
ing on the target platform (e.g., TCP sockets or HTTP). Such solutions are the most pragmatic:

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:15

Table 3. Placement Strategy

Language Placement Strategy

Automatic Explicit
Hop/Hop.js · staged
Links · partitioned
Opa partitioned ·
StiP.js partitioned ·
Ur/Web · staged
Eliom/Ocsigen · staged
Gavial · partitioned
AmbientTalk/R · partitioned
ML5 · partitioned
ScalaLoci · partitioned
WebSharper · partitioned
Haste · partitioned
Fun · partitioned
Koka · partitioned
Multi-Tier Calculus partitioned ·
Swift partitioned ·
Volta · partitioned
J-Orchestra · partitioned
Meteor · partitioned
GWT · partitioned

They do not break compatibility with tooling—if already available—and provide a programming
model that is quite close to traditional programming. Developers do not significantly change the
way they reason about coding-distributed applications and do not need to learn completely new
abstractions.

Domain-specific languages take over tasks specific to (certain types of) distributed applica-
tions, such as constructing a client-side user interface based on a given data model. Richard-Foy
et al. [106] propose a Scala EDSL that captures common tasks performed in web applications, e.g.,
defining DOM fragments. Their approach allows specializing code generation depending on the
target platform, e.g., using the Scala XML library when compiling to Java bytecode or using the
browser’s DOM API when compiling to JavaScript. Mobl [55] is a DSL for building mobile web
applications in a declarative way providing language features for specifying the data model, the
application logic and the user interface. Mobl compiles to a combination of different target lan-
guages, HTML, CSS and JavaScript. It, however, targets the client side only.

4.2 Placement Strategy

The placement strategy is the approach adopted by MT languages to assign data and computations
in the program to the hosts comprising the distributed system. Table 3 classifies MT languages into
approaches where placement is done automatically and approaches where placement is explicitly

specified by the developer. Even for MT solutions with automatic placement, the assignment to
different hosts is an integral part of the programming model. For example, specific parts of the
code have a fixed placement (e.g., interaction with the web browser’s DOM must be on the client)
or the developer is given the ability to use location annotations to enforce a certain placement.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:16 P. Weisenburger et al.

The code that is assigned to different places is either (1) partitioned (statically or dynamically)
into different programs or (2) separated into different stages, where the execution of one stage
generates the next stage and can inject values computed in the current stage into the next one.
When accessing a value of another partition in approach (1), the value is looked up remotely over
the network and the local program continues execution with the remote value after receiving
it. For handling remote communication asynchronously, remote accesses are either compiled to
continuation-passing style or asynchronicity is exposed to the developer using local proxy objects
such as futures. Using approach (2) for web applications, the server stage runs and creates the
program to be sent to the client. When generating the client program, references to server-side
values are spliced into client code, i.e., the client program that is sent already contains the injected
server-side values. Such staged execution reduces communication overhead since server-side val-
ues accessed by the client are already part of the generated client program.

In the case of web applications, as response to an HTTP request, the server delivers the program
to the client which executes it in the browser. For MT languages that do not target web applications,
the programs that result from the splitting start independently on different hosts and connect to
other parts upon execution, e.g., using peer-to-peer service discovery in AmbientTalk/R.

We first consider placement based on the different functionalities of the application logic which
naturally belong to different tiers. Then we present approaches where there are multiple options
for placement and the MT programming framework assigns functionalities to tiers based on vari-
ous criteria such as performance optimization and privacy.

4.2.1 Placement Based on Functional Properties. In most MT languages, the placement of
each functionality is fully defined by the programmer by using an escaping/quoting mechanism
(Hop [110], Ur/Web [28], Eliom [101]), annotations (Links [32]) , or a type-level encoding (ML5 [88],
Gavial [105], ScalaLoci [132]). Placement allows separate parts of the MT program to execute on
different hosts. The compile-time separation into different components either relies on (whole-
)program analysis (Ur/Web, ML5) or supports modular separation (Eliom, ScalaLoci), where each
module can be individually split into multiple tiers. On the other hand, dynamic separation is
performed at run time (Links, Hop).

When the placement specification is incomplete, there is room for alternative placement choices;
in which case, slicing [134] detects the dependencies between the fragments manually assigned
by developers and the rest of the codebase, ultimately determining the splitting border. For ex-
ample, in StiP.js [95, 96], code fragments are assigned to a tier based on annotations, then slic-
ing uncovers the dependencies. This solution allows developing MT web applications in existing
general-purpose languages as well as retaining compatibility with development tools. In the slic-
ing process, placement can be constrained not only explicitly, but also based on values’ behavior,
e.g., inferring code locations using control flow analysis or rely on elements for which the location
is known (e.g., database access takes place on the server, interaction with the DOM takes place on
the client) [31, 97, 102]. This complicates the integration into an existing language, especially in
presence of effects, and is less precise than explicit annotations—hindering, e.g., the definition of
data structures that combine fragments of client code and other data [101].

4.2.2 Placement Strategies. For the functionalities that can execute both on the client and on
the server, MT approaches either place unannotated code both on the client and on the server (e.g.,
Links [32], Opa [102], ScalaLoci [132]) or compute the placement that minimizes the communica-
tion cost between tiers (e.g., Distributed Orc [121]). Neubauer and Thiemann [90, 91] allow a prop-
agation strategy to produce different balances for the amount of logic that is kept on the client and
on the server, starting the propagation from some predefined operators whose placement is fixed.
The propagation strategy uses a static analysis based on location preferences and communication

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:17

Table 4. Placement Approach

Language Placement Specification Approach for given Granularity

Expression Binding Block Top-Level Binding Top-Level Block Class/Module File

Hop/Hop.js escaping/quoting · · annotation · · ·
Links · · · annotation · · ·
Opa · annotation and · · · · ·

static analysis

StiP.js · · · · annotation and · ·
static analysis

Ur/Web escaping/quoting · · dedicated · · ·
Eliom/Ocsigen escaping/quoting · · annotation · annotation ·
Gavial type · · · · · ·
AmbientTalk/R · · · · · dedicated ·
ML5 type · · · · · ·
ScalaLoci type · · type · · ·
WebSharper · · · annotation · annotation ·
Haste type · · · · · ·
Fun · · · dedicated · · ·
Koka · · · type · · ·
Multi-Tier Calculus static analysis · · · · · ·
Swift static analysis · · · · · ·
Volta · · · · · annotation ·
J-Orchestra · · · · · external ·
Meteor · · dynamic run · · · directory

time check

GWT · · · · · · directory

requirements to optimize performance (contrarily to many MT approaches where the choice is left
to the programmer). Jif/split [141] considers placement based on security concerns: Protection of
data confidentiality is the principle to guide the splitting. The input is a program with security
annotations and a set of trust declarations to satisfy. The distributed output program satisfies all
security policies. As a result, programmers can write code that is agnostic to distribution, but fea-
tures strong guarantees on information flow. Similarly, Swift [30] also partitions programs based
on security labels, but focuses on the Web domain, where the trust model assumes a trusted server
that interacts with untrusted clients.

An exception to the approaches above—which all adopt a compile time splitting strategy—is
Fission [52], which uses information flow control to separate client and server tiers at run time. The
dynamic approach allows supporting JavaScript features that are hard to reason about statically,
such as eval, as well as retaining better compatibility with tooling.

4.3 Placement Specification and Granularity

Placement specification in MT languages is defined at different granularity levels. Languages that
allow composing code belonging to different hosts in the same compilation unit follow various
approaches to specify the execution location. Table 4 classifies the MT languages based on the
placement specification approach (Section 4.3.1) and the granularity given in the first row (Sec-
tion 4.3.2). For example, Hop.js allows escaping arbitrary expressions to delimit code of a different
tier. Links uses annotations on top-level bindings to specify the tier to which a binding belongs.

4.3.1 Placement Specification. We identified the following strategies used by MT languages to
determine placement:

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:18 P. Weisenburger et al.

Dedicated tier assignment always associates certain language constructs to a tier, e.g., top-level
name bindings are always placed on the server or every class represents a different tier.

Annotations specify the tier to which the annotated code block or definition belongs, driving
the splitting process.

Escaping/quoting mechanisms are used when the surrounding program is placed on a specific
tier, e.g., the server, and nested expressions are escaped/quoted to delimit the parts of the
code that run on another specific tier, e.g., the client.

Types of expressions determine the tier, making placement part of the type system.
Static analysis determines the tier assignment at compile-time based on functional properties

of the code (such as access to a database or access to the DOM of the webpage).
Dynamic run time checks allow developers to check at run time which tier is currently execut-

ing the running code, and select the tier-specific behavior based on such condition.

The following strategies are used by approaches lacking language-level support for placement:

External configuration files assign different parts of the code (such as classes) to different tiers.
Different directories are used to distinguish among the files containing the code for different

tiers.

Links [32] and Opa [102] provide dedicated syntax for placement (e.g., fun f() client and fun
f() server in Links). Volta [81] relies on the C# base language’s custom attribute annotations
to indicate the placement of abstractions (e.g., [RunAt("Client")] class C). WebSharper [13]
uses a JavaScript F# custom attribute to instruct the compiler to translate a .NET assem-
bly, a module, a class or a class member to JavaScript (e.g., [<JavaScript>] let a = ...).
Stip.js [95] interprets special forms of comments (e.g., /* @client */ {...} and /* @server
*/ {...}). While MT languages usually tie the placement specification closely to the code and
define it in the same source file, approaches like J-Orchestra [122], require programmers to assign
classes to the client and server sites in an XML configuration file.

ML5 [88] captures the placement explicitly in the type of an expression. For example, an expres-
sion expr of type string @ server can be executed from the home world using from server
get expr. The placement of every expression is determined by its type and the compiler ensures
type-safe composition of remote expressions through from ... get. Similarly, in ScalaLoci [132],
a binding value of type String on Server can be accessed remotely using value.asLocal.
Haste [41] also features a type-based placement specification using monadic computations by
wrapping client and server code into different monads. Koka [73] uses a type and effect sys-
tem to capture which functions can only be executed on the client and which functions can only
be executed on the server, preventing cross-tier access without explicitly sending and receiving
messages.

4.3.2 Placement Granularity. On a different axis, existing MT approaches cover a wide gran-
ularity spectrum regarding the abstractions for which programmers can define placement: files

(e.g., GWT [64]), classes (e.g., Volta [81], J-Orchestra [122]), top-level code blocks (e.g., Stip.js [95]),
top-level bindings (e.g., Links [32]), (potentially nested) blocks (e.g., Meteor [119]), bindings (e.g.,
Opa [102]) and (sub)expressions (e.g., Eliom [101], ML5 [88]). Specification granularities supported
by a language are not mutually exclusive, e.g., ScalaLoci [132] supports placed top-level bindings
and nested remote blocks. In Hop [110] and Ur/Web [28], which target web applications, where
the execution of server code is triggered by an HTTP client request, all top-level bindings define
server-side code and nested client-side code is escaped/quoted at the granularity of expressions.
Eliom [101] supports both nested client expressions and annotated top-level client/server bindings.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:19

Table 5. Communication Abstractions

Language Communication Abstraction

Remote Message Publish– Reactive Shared
Procedures Passing Subscribe Programming State

Hop/Hop.js �c→s � � · ·
Links �t,c � · · ·
Opa �t � · · ·
StiP.js �t · � · �
Ur/Web �c→s �s→c · · ·
Eliom/Ocsigen � � · � ·
Gavial · · · � ·
AmbientTalk/R · · � � ·
ML5 � · · · ·
ScalaLoci � · · � ·
WebSharper � · · · ·
Haste �c→s · · · ·
Fun · · · · �
Koka · � · · ·
Multi-Tier Calculus �t · · · ·
Swift �t · · · ·
Volta �t · · · ·
J-Orchestra �t · · · ·
Meteor � · � · �
GWT � · · · ·
� Language support, � Support through libraries, c→s From client to server only, s→c From server to

client only, t Fully transparent remote procedure, c Client-initiated.

The approach most akin to traditional languages is to force programmers to define functional-
ities that belong to different hosts in separated compilation units such as different Java packages
(GWT [64]) or different directories (Meteor [119]). An even coarser granularity is distribution at
the software component level. R-OSGi [103] is an OSGi extension where developers specify the
location of remote component loading and Coign [59] extends COM to automatically partition and
distribute binary applications. These solutions, however, significantly depart from the language-
based approach of MT programming.

4.4 Communication Abstractions

MT approaches provide dedicated abstractions intended to simplify implementing remote com-
munication, which differ considerably among languages. Table 5 provides an overview over these
abstractions. Languages either support specific forms of communication only in a single direction—
either from client to server or from server to client—or support bidirectional communication (po-
tentially requiring the client to initiate the communication). MT languages also differ in whether
they make remote communication explicit (and with it, the associated performance impact) or
completely transparent to the developer.

Remote communication mechanisms are either integrated into the language using convenient
syntactic constructs (e.g., from ... get expr in ML5 [88], value.asLocal in ScalaLoci [132]
or rpc fun in Ur/Web [28]), or are made available through the standard library that comes
with the language (e.g., webSocket.send(message) in Hop.js [111] or service.fun(new

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:20 P. Weisenburger et al.

AsyncCallback() {...}) in GWT [64] or Meteor.call("fun", function(error, result)
{...}) in Meteor [119]). We list the communication approaches found in the respective MT lan-
guages in Table 5. Developers can, however, implement such communication mechanisms that are
not supported out-of-the-box (by dedicated language features or as part of the standard library)
as an external library, e.g., providing a library that supports event-based communication based
on remote procedure calls or using a persistent server (e.g., in Links [32]) to emulate shared data
structures. We do not consider such external solutions here. We identify the following remote
communication mechanisms:

Remote procedures are the predominant communication mechanism among MT languages.
Remote procedures can be called in a way similar to local functions—either completely
transparently or using a dedicated remote invocation syntax—providing a layer of ab-
straction over the network between the call site and the invoked code.

Message passing abstractions are closer to the communication model of the underlying net-
work protocols, where messages are sent from one host to another.

Publish–subscribe allows tiers to subscribe to topics of their interest and receive the messages
published by other tiers for those topics.

Reactive programming for remote communication defines data flows across tiers through event
streams or time-changing values that upon each change automatically update the derived
reactive values on the remote tiers.

Shared state makes any updates to a shared data structure performed on one tier available to
other tiers accessing the data structure.

MT languages that target the Web domain follow a traditional request–response scheme, where
web pages are generated for each client request and the client interacts with the server by user
navigation. Both Hop [110] and Eliom [101] allow client and server expressions to be mixed. All
server expressions are evaluated on the server before delivering the web page, and client expres-
sions are evaluated on the client. Hop additionally provides traditional client–server communica-
tion via asynchronous callbacks, whereas Eliom supports more high-level communication mech-
anisms based on reactive programming through libraries.

WebDSL [49], for example, is an external DSL for web applications to specify the data model
and the pages to view and edit data model objects. HTML code is generated for pages, which is
reconstructed upon every client request.

4.4.1 Call-Based Communication. MT languages provide communication abstractions for
client–server interaction not necessarily related to page loading, including RPC-like calls to re-
mote functions, shared state manipulation, or message-passing. Abstracting over calling server-
side services and retaining the result via a local callback, Links [32] allows bidirectional remote
function calls, between client and server. RPC calls in Links, however, hide remote communication
concerns completely which has been criticized because the higher latency is not explicit [63]. In
contrast, Links’ more recent message-passing communication mechanism features explicit send
and receive operations.

In both Ur/Web [28] and Opa [102], server and client can communicate via RPCs or message-
passing channels. Due to the asymmetric nature of client–server web applications, Ur/Web follows
a more traditional approach based on RPCs for client-to-server communication and provides chan-
nels for server-to-client communication.

4.4.2 Event-Based Communication. Publish–subscribe middleware has been used in the context
of loosely coupled mobile devices (AmbientTalk [24, 39]). Hiphop [12], which extends Hop [110]
with synchronous data flows, borrows ideas from synchronous data flow languages, à la Esterel [11].

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:21

The approach provides substantial guarantees on time and memory bounds, at the cost, however, of
significantly restricting expressivity. In ScalaLoci [132], Gavial [104, 105], AmbientTalk/R [39], or
libraries for Eliom [101], tiers expose behaviors (a.k.a. signals) and events in the style of functional
reactive programming to each other.

4.4.3 Distributed Shared State. Meteor [119] provides collections to store JSON-like documents
and automatically propagate changes to the other tier. Similarly, in Fun [135], a language for real-
time web applications, modifications to variables bound to the Global object are automatically
synchronized across clients. MT languages usually support (or even require) a central server
component, enabling shared state via the server as central coordinator that exposes its state to
the clients.

4.5 Formalization of MT Languages

From a formal perspective, MT programming has been investigated in various publications. In this
section, we first present a classification of existing formal models using three analysis directions:
the formalization approach, the proof methods, and the properties considered in the formalization.
Finally, we describe the formalizations of MT languages in more detail, classifying them according
to the points above.

4.5.1 Techniques and Scope. Existing formal models for MT languages that specify an opera-
tional semantics follow three main approaches: (s1) they formalize how a single coherent MT pro-

gram is executed modeling how computation and communication happen in the whole distributed
setting (e.g., with a semantics where terms can be reduced at different locations) [16, 90, 101, 132],
(s2) they specify a splitting transformation that describes how tier-specific programs are extracted
from MT code and they provide an independent reduction model for the split tiers [34, 90, 101], or
(s3) they specify the semantics in terms of an existing calculus [73], i.e., the semantics of a calculus
not specific to MT languages is reinterpreted for MT programming, e.g., different effects in a type
and effect system represent different tiers. Serrano and Queinnec’s [112] continuation-based deno-
tational semantics is an exception to the operational approach. It disregards concurrent execution
of client and server focusing on a sequential fragment of Hop to model dynamic server-side client
code generation.

Based on the models above, researchers looked at properties including (p1) type soundness as
progress and preservation [16, 73, 90, 132], (p2) behavioral equivalence of the execution of the
source MT program (cf. a1) and the interacting concurrent execution of the tier-specific pro-
grams (cf., a2) [34, 90, 101], and (p3) domain-specific properties domain-specific properties that
are significant in a certain context such as secure compilation [10], or performance for data ac-
cess [25], as well as domain-specific properties, such as host reachability in software-defined net-
works [89]. Crucially, the fact that MT languages model client and server together enables rea-
soning about global data flow properties such as privacy. The small-step semantics of Hop [16]
has been used to model the browser’s same-origin policy and define a type system that enforces
it. A similar approach has been proposed to automatically prevent code injection for web applica-
tions [80]. Splitting in Swift [30] is guaranteed to keep server-side private information unreachable
by client-side programs.

Researchers adopted proof methods that belong to two categories: (m1) perform the proofs di-
rectly on the semantics that describes the whole system and/or the splitting transformation [16,
34, 90, 101, 132] or (m2) leverage proved properties of an existing calculus [32, 73].

4.5.2 Formalizations. Table 6 provides a classification of the formalizations of MT languages.
For the discussion, we leave out languages lacking a formal development. Most formalizations

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:22 P. Weisenburger et al.

Table 6. Formalization Approach

Language Proved Properties

Type Soundness Behavioral Equivalence Domain-Specific

of Coherent MT Program based on Existing Calculus of Splitting Transformation Properties

Hop/Hop.js denotational · · operational

(same-origin policy)

Links · · operational ·
Eliom/Ocsigen operational · operational ·
ScalaLoci operational · · ·
Multi-Tier Calculus operational · operational ·
Koka · operational · ·

model MT applications as single coherent programs, providing soundness proofs for the MT lan-
guage. Another common approach for reasoning about the behavior of MT code is to formally
define the splitting transformation that separates MT code into its tier-specific parts to show be-
havioral equivalence of the original MT program and the split programs after the transformation.
In the case of Hop [16] formal reasoning focuses on properties specific to the Web domain, e.g.,
conformance of MT programs to the browser’s same-origin policy. Koka’s effect system [73] can be
used to implement different tiers in the same compilation unit. The sound separation into different
tiers in Koka follows from the soundness of the effect system.

The seminal work by Neubauer and Thiemann [90] presents an MT calculus for web applica-
tions. A static analysis on a simply-typed call-by-value lambda calculus determines which expres-
sions belong to each location and produces the assignment of the code to the locations, which
results in a lambda calculus with annotated locations. A further translation to an MT calculus (s1)
explicitly models opening and closing of communication channels. Type soundness for the MT
calculus is proved (p1). The splitting transformation (s2), which extracts a program slice for each
location, is proved to generate only valid programs wrt the source (p2). The transformed program
is considered valid if it is weakly bisimilar [92] to the source program, i.e, if it performs the same
operations with the same side effects and the operations are in the same order (m1).

Boudol et al. provide a small-step operational semantics for Hop [16], which covers server-side
and client-side computations, concurrent evaluation of requests on the server and DOM manip-
ulation (s1). For Hop, based on Scheme, which does not feature a static type system, the authors
define a type system for “request-safety” (p1), which ensures that client code will never request
server-side services that do not exist. Request-safety is proven sound (m1).

The formalization of the Links programming language [32] is based on RPC calculus [29, 34]
(m2)—an extension of lambda calculus—which models location awareness for stateful clients and
stateless servers. The RPC calculus is transformed (s2) into a client program and a server program
in the client/server calculus. The transformation is proved to be correct and complete (m1). Fur-
ther, a location-aware calculus, which is the the theoretical foundation for the Links programming
language, and a translation to RPC calculus is provided (p2). A simulation that proves that the
behavior of the transformed program in the client/server calculus conforms to the behavior of the
source program in location-aware calculus is left to future work.

Eliom [101] is formalized as an MT extension of core ML. The authors provide an operational
semantics that formalizes the execution for an Eliom program (s1) and provide a translation (s2)
separating an Eliom program into server and client ML programs. Besides subject reduction (p1),
the authors prove the equivalence of the high level MT semantics with the semantics of the com-
piled client and server languages after splitting by simulation (p2). The simulation shows that, for
any given source program, every reduction can be replayed in the transformed programs (m1).
Eliom separates type universes for client and server, allowing the type system to track which

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:23

Table 7. Distribution Topologies

Language Distribution Topology

Client–Server Client–Server + Peer-to-Peer Specifiable
Database

Hop/Hop.js � · · ·
Links · � �1 ·
Opa · � · ·
StiP.js � · · ·
Ur/Web · � · ·
Eliom/Ocsigen � · · ·
Gavial � · · ·
AmbientTalk/R · · � ·
ML5 � · · �
ScalaLoci · · · �
WebSharper � · · ·
Haste � · · ·
Fun � · · ·
Koka � · · �
Multi-Tier Calculus � · · �
Swift � · · ·
Volta � · · ·
J-Orchestra · · · �
Meteor � · · ·
GWT � · · ·
� Supported;� Support conceptually possible, but not supported by the provided examples or the imple-

mentation; 1 Client-to-client communication transparently through central server.

values belong to which side. Eliom, however, leaves out interactive behavior, formalizing only the
creation of a single page.

In ScalaLoci’s formal semantics [132], the reduction relation is labeled with the distributed com-
ponents on which a term is reduced (s1). The authors formulate soundness properties for the en-
coding of placement at the type level, e.g., that terms are reduced on the instances of the peers on
which they are placed (p1). The type system is proven sound (m1).

Using the Koka language, it is possible to define a splitting function for the server and client
parts of a program [73] based on Koka’s ability to separate effectful computations (s3), which
guarantees type soundness for the split programs (p1), e.g., an application can define a client effect
consisting of DOM accesses and a server effect consisting of I/O operations (m2).

4.6 Distribution Topologies

Table 7 gives an overview over the distribution topologies supported by MT languages. The ma-
jority of MT approaches specifically targets client–server applications in the Web domain. Besides
the client and the server tier, Links [32], Opa [102], and Ur/Web [28] also include language-level
support for the database tier. Other MT languages require the use of additional libraries to access
a database (e.g., Hop [110] or Eliom [101]).

Only few approaches target other distribution topologies: AmbientTalk [39] focuses on mobile
ad hoc networks and allows services to be exported and discovered in a peer-to-peer manner, where
peers are loosely coupled. ML5 [88] is an MT language which adopts the idea of possible worlds

from models of modal logic to represent the different tiers in the distributed system. Worlds are

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:24 P. Weisenburger et al.

used to assign resources to different tiers. Although this approach is potentially more general than
the client–server model allowing for the definition of different tiers, the current compiler and run-
time target web applications only. Similarly, in the MT calculus by Neubauer and Thiemann [90],
locations are members of a set of location names that is not restricted to client and server. Their
work, however, focuses on splitting code between a client and as server. Session-typed channels in
Links [32] provide the illusion of client-to-client communication, but messages are routed through
the server. In J-Orchestra [122], developers can define different interconnected network sites in a
configuration file.

ScalaLoci [132] allows developers to specify a distributed system’s topology by declaring types
representing the different components and their relation. Thus, developers can define custom
architectural schemes (i.e., not only client–server) and specify various computing models (e.g.,
pipelines, rings, or master–worker schemes).

5 DISCUSSION AND OUTLOOK

In this section, we discuss open issues in MT programming and suggest future research directions.

5.1 Generic Distributed Systems

A significant limitation of most existing MT research languages (e.g., [28, 32, 95, 101, 102, 105,
110]) is that they do not address generic distributed systems but consider only the client–server
architecture with clients of the same kind, mostly in the limited setting of web applications. Yet,
many distributed systems require more complex architectures and configurations with different
kinds of components—different types of clients, coordinators (e.g., in a master–worker scheme),
backup nodes and logging services. The ScalaLoci MT language [132] contributes to this area with
means to specify an architecture based on peer types, thus, supporting generic distributed systems,
whose architecture can be defined by the developer.

It is likely that the lack of support for generic distributed architectures in most MT languages
has limited the investigation of some aspects that are significant in distributed systems. For exam-
ple, current MT languages consider only one level of consistency [130] (e.g., causal consistency),
the one guaranteed—often implicitly—by the underlying communication system. However, in dis-
tributed applications, developers need to be able to choose among different levels of consistency
and the safety/performance tradeoff they offer. Further, existing MT languages do not provide ded-
icated language abstractions for designing fault-tolerant systems (e.g., actors’ supervision trees).
This state of things is motivated by the context where MT programming has been applied so far,
the Web, where a permanent client failure cannot be recovered anyway.

5.2 Failures

In a distributed setting, including the Web, hosts may fail or disconnect without notice. In particu-
lar, for web applications, clients may close the browser at any point in time. To improve resiliency
to faults, remote communication in MT languages is non-blocking, i.e., the program continues
execution even when the remote communication channel is interrupted. Beyond that, some MT
languages provide primitives that developers can use to detect disconnection, such as dedicated
notification events, callbacks and exceptions.

Calling a service in Hop or GWT, for example, either invokes a success callback or a fail-
ure callback. In Stip.js, failure handling is defined via annotations (i.e., @defineHandler and
@useHandler). Links’ remote communication based on session types supports exception han-
dling to deal with communication failures and disconnections. In ScalaLoci’s event streams, fail-
ures are propagated downstream in a monadic fashion and developers can define failure han-
dlers for upstream operators, similar to supervisors in actor systems. A special event signals the

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:25

disconnection of a remote component. AmbientTalk provides fault-tolerant asynchronous mes-
sage passing between distributed components. Messages sent to a disconnected component are
buffered and delivered after the component reconnects. J-Orchestra allows developers to manu-
ally implement error handling by editing the code after splitting.

5.3 Programming in the Large

Current MT languages do not support dedicated modularization abstractions for programming in
the large, such as module systems [74]. As a result, scalability for MT codebases is an open research
topic, with the risk of severely hindering collaborative development and maintainability. There are
two aspects to consider.

First, there is a technical challenge in the compilation process as the splitting into tier-specific
code needs to be modular. For example, Ur/Web [28] supports a module system in the style of ML.
However, Ur/Web does not feature separate compilation of modules since the language relies on
whole-program analysis for slicing the application into client and server programs.

Second, an interesting research direction is to revisit existing modularization mechanisms to
design them in synergy with MT abstractions, allowing the independent specification of placement
and the combination of (multiple) modules through composition mechanisms (e.g., ML functors).

A notable exception to the lack of MT abstractions for programming in the large is the Eliom
language [101]. In the context of Eliom, Radanne and Vouillon propose a module system [100]
based on ML-style modules featuring functors to abstract over other modules. Eliom modules can
contain client or server declarations (annotated as %client and %server). Mixed modules, defin-
ing both client and server code, span over the client–server boundary enabling software modu-
larization along the modules direction as well as abstraction over the two tiers at the same time.
Another example is the ScalaLoci [132] language for generic distributed systems, which supports
a multitier module system [133] that uses abstract peer types to express the distributed architecture
of the (sub)system encapsulated within each module. Developers use such abstract peer types to
specify the placement of values at the type level and compose modules to combine the different
(sub)system’s architectures.

5.4 Controlled Experiments

Controlled experiments allow researchers to study the effect of languages on aspects such as de-
velopment time, which cannot be easily inferred from analyzing program code. Unfortunately, we
are not aware of empirical studies or controlled experiments that target MT programming. There
are a number of aspects that can be measured, but a first step may entail an assessment of the
effect of MT on program comprehension.

A promising option in this direction would be to consider exploratory studies such as interviews
and the think-aloud approach [70, 71]. Also, MT programming combines functionalities that tradi-
tionally belong to different compilation units into into the same unit, which should be detectable
with eye-tracking techniques, which have been successfully applied to understand how source
code is inspected, debugged and comprehended by developers [20, 61, 65, 77, 125]. A different per-
spective is the effect of the MT paradigm on the cognitive models that developers build regarding
software artifacts, or the the bottom-up model (or situation model) by Letovsky [75].

6 RELATED APPROACHES

In this section, we provide an overview of related research areas that influenced research on MT
programming or share concepts with the MT paradigm.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:26 P. Weisenburger et al.

PGAS Languages. Partitioned global address space languages (PGAS) [37] provide a high-level
programming model for high-performance parallel execution. For example, X10 [26] parallelizes
task execution based on a work-stealing scheduler, enabling programmers to write highly scal-
able code. Its programming model features explicit fork/join operations to make the cost of com-
munication explicit. X10’s sophisticated dependent-type system [25] captures the place (the heap
partition) a reference points to. Similar to MT languages, PGAS languages aim at reducing the
boundaries between hosts, adopting a shared global address space to simplify development. The
scope of PGAS languages, however, is very diverse—they focus on high performance computing
in a dedicated cluster, while MT programming targets client–server architectures on the Internet.

Operator Placement. In contrast to explicit placement (e.g., via annotations), the operator place-
ment problem consists of finding the best host on which each operator should be deployed in a dis-
tributed system according to maximize a certain metric, such as throughput [35, 69] or load [27].
Methods in this field include the creation of overlay networks where operators are assigned to
hosts via random selection [58], network modeling [98] and linear optimization to find the opti-
mal solution to the constraint problem [23].

Software Architectures. Software architectures [47, 93] organize software systems into compo-
nents and their connections as well as constraints on their interaction. Architecture description
languages (ADL) [82] provide a mechanism for high-level specification and analysis of large soft-
ware systems, for example, to guide architecture evolution. Yet, ADLs are often detached from im-
plementation languages. ArchJava [3] paved the way for consolidating architecture specification
and implementation in a single language. However, ArchJava does not specifically address dis-
tributed systems nor MT programming. Some approaches are at the intersection of MT and mod-
eling languages: Hilda [139] is a web development environment for data-driven applications based
on a high-level declarative language similar to UML which automatically partition MT software.

Choreographies. In choreographic programming, a concurrent system is defined as a single com-
pilation unit called choreography, which is a global description of the interactions and computa-
tions of a distributed system’s connected components [142, 143, 149]. Similar to MT programming,
the compiler automatically produces a correct implementation for each component, e.g., as a pro-
cess or as a microservice [147]. While MT languages abstract over communication, choreographic
programming is communication-centric and the expected communication flow among components
is defined explicitly. The compiler is responsible for generating code that strictly abides by this
flow. Choreographic programming’s formal foundations are rooted in process calculi [150]. It has
been used to investigate new techniques on information flow control [146], deadlock-free dis-
tributed algorithms [145] and protocols for dynamic run time code updates for components [144].
Role parameters in the choreographic language Choral [148] recall ScalaLoci’s abstract peer types
[133]: They can be freely instantiated with different arguments, further allowing for components
to dynamically switch the roles in the distributed system at run time.

Actor Model. The Actor model, initially described by Hewitt et al. [56] and available in pop-
ular implementations such as Erlang OTP [7] and Akka [2], encapsulates control and state into
computation units that run concurrently and exchange messages asynchronously [1]. The decou-
pling offered by asynchronous communication and by the no-shared-memory approach enables
implementing scalable and fault-tolerant systems. De Koster et al. [36] classify actor systems into
four different variants: (i) the classic actor model allows for changing the current interface of an
actor (i.e., the messages which an actor can process) by switching between different named be-
haviors, which handle different types of messages, (e.g., Rosette [123], Akka [2]), (ii) active objects

define a single entry point with a fixed interface (e.g., SALSA [129], Orleans [21]), (iii) process-based

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

A Survey of Multitier Programming 81:27

actors are executed once and run until completion, supporting explicit receive operations during
run time (e.g., Erlang [7], Scala Actor Library [53]), and (iv) communicating event-loops combine an
object heap, a message queue and an event loop and support multiple interfaces simultaneously
by defining different objects sharing the same message queue and event loop (e.g., E [86]). Actors,
however, are a relatively low-level mechanism to program distributed systems, leaving program-
mers the manual work of breaking applications between message senders and message handlers.
The survey by de Boer et al. [15] provides an overview of the current state of research on actors
and active object languages.

Big Data Processing Systems. Part of the success of modern Big Data systems is due to a pro-
gramming interface that—similar to MT programming—allows developers to define components
that run on different hosts in the same compilation unit, with the framework adding communica-
tion and scheduling. This class of systems includes batch processing frameworks like Hadoop [38]
and Spark [140], as well as stream processing systems like Flink [4] and Storm [118]. Since queries
may process datasets that span multiple data centers and minimizing the traffic is crucial, ap-
proaches like Silos [68] offer abstractions that group nodes belonging to the same location so that
the scheduler can minimize cross-data-center data transfer. Yet, in Big Data systems, the language
semantics is visibly different, for example, mutable shared variables are transformed in non-shared
separated copies.

Language Integration for Database Queries. Properly integrating query languages into general-
purpose languages is a longstanding research problem [8]. Compiling embedded queries into SQL
was pioneered by the Kleisli system [138]. LINQ [124] is a language extension based on Kleisli’s
query compilation technique to uniformly access different data sources such as collections and re-
lational databases. The Links [32] MT language also relies on this technique for providing access to
the database tier. Recent approaches for embedding database queries, such as JReq [60], Ferry [51],
DBPL [109], Slick [115] or Quill [99], also follow a functional approach without object-relational
mapping.

Multi-Stage Programming. Multi-stage programming splits program compilation into a num-
ber of stages, where the execution of one stage generates the code that is executed in the next
stage. MetaML [120] and MetaOCaml [22] provide a quasi-quotation mechanism that is statically
scoped to separate stages syntactically. Quoted expressions are not evaluated immediately but
they generate code to be executed in the next stage. The Hop [110] MT language uses multi-stage
programming to construct client code at the server side. Instead of using syntactic quotations,
lightweight modular staging [108] employs a staging approach based on types, combining staged
code fragments with strong guarantees on well-formedness and type soundness. Using lightweight
modular staging with the Scala-virtualized modified Scala compiler [87], also enables overloading
Scala language constructs such as loops and control structures.

Heterogeneous Computing. In heterogeneous computing, distributed systems consist of different
kinds of processing devices, supporting different specialized processing features. The OpenCL
standard [66] for implementing systems across heterogeneous platforms is rather low-level,
requiring the programmer to be aware of the specific hardware, e.g., specifically redesigning
serial algorithms into parallel ones. Approaches for improving programming heterogeneous
systems include (i) compiler directives to offload computations to specialized processing units,
independent of specific hardware characteristics [6]; (ii) domain-specific embeddings for general-
purpose languages [17, 72, 131] abstracting over low-level details, such as compute kernel
execution; and (iii) higher level programming models that provide primitives for a predefined set
of operations [136].

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

81:28 P. Weisenburger et al.

Domain-Specific Languages. Several survey papers are available in the literature that provide
an extensive overview of DSLs [83, 117, 126, 127]. Wile [137] provides a compendium of lessons
learnt on developing domain-specific languages providing empirically derived guidelines for con-
structing and improving DSLs. So called fourth generation programming languages—following
third-generation hardware-independent general-purpose languages—are usually DSLs that pro-
vide higher levels of abstraction for a specific domain, such as data management, analysis, and
manipulation [44, 67].

Programming Languages for Distributed Systems. MT programming belongs to a long tradition of
programming language design for distributed systems with influential distributed languages like
Argus [79], Emerald [14], Distributed Oz [54, 128], Dist-Orc [5], and Jolie [151]. More recently,
there have been contributions to specific aspects in the design of programming languages that con-
cern the support for distributed systems, such as cloud types to ensure eventual consistency [18],
conflict-free replicated data types (CRDT) [114], language support for safe distribution of com-
putations [85] and fault tolerance [84], as well as programming frameworks for mixed IoT/Cloud
development, such as Ericsson’s Calvin [94].

7 CONCLUSION

In this article, we provide an overview of MT languages, a programming approach which com-
bines the functionalities that belong to different tiers into the same compilation unit, delegating
injection of communication code and generation of the deployment units to the compiler. We pro-
vide an overview of the existing solutions, discuss their positioning in the design space, including
placement strategy, placement specification and granularity, degree of MT programming, commu-
nication abstractions, formalization, and supported architectures.

We hope that this article can help researchers to orient themselves in the landscape of MT
programming design as well as encourage future development of MT languages.

ACKNOWLEDGMENTS

We would like to thank Simon Fowler, Manuel Serrano, Gabriel Radanne and Adam Chlipala for
the feedback they provided on this manuscript, concerning (but not limited to) the Links language,
the Hop and the Hop.js languages, the Eliom language and the Ur/Web language, respectively.

REFERENCES

[1] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA.

[2] Akka. 2009. http://akka.io/. Accessed 2020-05-05.

[3] Jonathan Aldrich, Craig Chambers, and David Notkin. 2002. ArchJava: Connecting software architecture to imple-

mentation. In Proceedings of the 24th International Conference on Software Engineering (ICSE’02). ACM, New York,

187–197. DOI:https://doi.org/10.1145/581339.581365

[4] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid Heise,

Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid Rheinländer, Matthias J.

Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke. 2014. The stratosphere platform for

big data analytics. The VLDB Journal 23, 6 (Dec. 2014), 939–964. DOI:https://doi.org/10.1007/s00778-014-0357-y

[5] Musab AlTurki and José Meseguer. 2010. Dist-Orc: A rewriting-based distributed implementation of orc with formal

analysis. In Proceedings of the 1st International Workshop on Rewriting Techniques for Real-Time Systems (RTRTS’10).

26–45. DOI:https://doi.org/10.4204/EPTCS.36.2

[6] José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez, and Juan Touriño. 2016. Locality-aware auto-

matic parallelization for GPGPU with openhmpp directives. Int. J. Paral. Prog. 44, 3 (June 2016), 620–643. DOI:https://

doi.org/10.1007/s10766-015-0362-9

[7] Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (Sept. 2010), 68–75. DOI:https://doi.org/10.1145/1810891.1810910

[8] Malcolm P. Atkinson and O. Peter Buneman. 1987. Types and persistence in database programming languages.

Comput. Surveys 19, 2 (June 1987), 105–170. DOI:https://doi.org/10.1145/62070.45066

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

http://akka.io/
https://doi.org/10.1145/581339.581365
https://doi.org/10.1007/s00778-014-0357-y
https://doi.org/10.4204/EPTCS.36.2
https://doi.org/10.1007/s10766-015-0362-9
https://doi.org/10.1007/s10766-015-0362-9
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/62070.45066

A Survey of Multitier Programming 81:29

[9] Vincent Balat. 2006. Ocsigen: Typing web interaction with objective caml. In Proceedings of the 2006 Workshop on

ML (ML’06). ACM, New York, 84–94. DOI:https://doi.org/10.1145/1159876.1159889

[10] Ioannis G. Baltopoulos and Andrew D. Gordon. 2009. Secure compilation of a multi-tier web language. In Proceedings

of the 4th International Workshop on Types in Language Design and Implementation (TLDI’09). ACM, New York, 27–38.

DOI:https://doi.org/10.1145/1481861.1481866

[11] Gérard Berry and Georges Gonthier. 1992. The esterel synchronous programming language: Design, semantics,

implementation. Science of Computer Programming 19, 2 (Nov. 1992), 87–152. DOI:https://doi.org/10.1016/0167-

6423(92)90005-V

[12] Gérard Berry, Cyprien Nicolas, and Manuel Serrano. 2011. HipHop: A synchronous reactive extension for Hop. In

Proceedings of the 1st ACM SIGPLAN International Workshop on Programming Language and Systems Technologies for

Internet Clients (PLASTIC’11). ACM, New York, 49–56. DOI:https://doi.org/10.1145/2093328.2093337

[13] Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. 2010. Composing reactive GUIs in F# Using websharper. In

Proceedings of the 22nd International Conference on Implementation and Application of Functional Languages (IFL’10).

Springer-Verlag, Berlin, 203–216. DOI:https://doi.org/10.1007/978-3-642-24276-2_13

[14] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. 2007. The development of the emerald

programming language. In Proceedings of the 3rd ACM SIGPLAN Conference on History of Programming Languages

(HOPL III). ACM, New York, 11:1–11:51. DOI:https://doi.org/10.1145/1238844.1238855

[15] Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang Din, Einar Broch

Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun Yang. 2017. A survey of

active object languages. Comput. Surveys 50, 5, Article 76 (Oct. 2017), 39 pages. DOI:https://doi.org/10.1145/3122848

[16] Gérard Boudol, Zhengqin Luo, Tamara Rezk, and Manuel Serrano. 2012. Reasoning about web applications: An

operational semantics for hop. ACM Transactions on Programming Languages and Systems 34, 2, Article 10 (June

2012), 40 pages. DOI:https://doi.org/10.1145/2220365.2220369

[17] Jens Breitbart. 2009. CuPP – a framework for easy CUDA integration. In Proceedings of the 2009 IEEE Interna-

tional Symposium on Parallel & Distributed Processing (IPDPS’09). IEEE Computer Society, Washington, DC, 8. DOI:
https://doi.org/10.1109/IPDPS.2009.5160937

[18] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. 2012. Cloud types for eventual consis-

tency. In Proceedings of the 26th European Conference on Object-Oriented Programming (ECOOP’12). Springer-Verlag,

Berlin, 283–307. DOI:https://doi.org/10.1007/978-3-642-31057-7_14

[19] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. Pattern-Oriented Soft-

ware Architecture: A System of Patterns. Vol. 1. John Wiley & Sons.

[20] Teresa Busjahn, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael Hansen, Roman Bednarik, Paul Orlov,

Petri Ihantola, Galina Shchekotova, and Maria Antropova. 2014. Eye tracking in computing education. In Proceedings

of the 10th Annual Conference on International Computing Education Research (ICER’14). ACM, New York, 3–10.

DOI:https://doi.org/10.1145/2632320.2632344

[21] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud

computing for everyone. In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC’11). ACM, New

York, Article 16, 14 pages. DOI:https://doi.org/10.1145/2038916.2038932

[22] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing multi-stage languages using

ASTs, gensym, and reflection. In Proceedings of the 2nd International Conference on Generative Programming and

Component Engineering (GPCE’03). Springer-Verlag, Berlin, 57–76. DOI:https://doi.org/doi.org/10.1007/978-3-540-

39815-8_4

[23] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli. 2016. Optimal operator place-

ment for distributed stream processing applications. In Proceedings of the 10th ACM International Conference

on Distributed and Event-Based Systems (DEBS’16). ACM, New York, 69–80. DOI:https://doi.org/10.1145/2933267.

2933312

[24] Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang De Meuter. 2010. Loosely-coupled

distributed reactive programming in mobile ad hoc networks. In Proceedings of the 48th International Conference on

Objects, Models, Components, Patterns (TOOLS’10). Springer-Verlag, Berlin, 41–60. DOI:https://doi.org/10.1007/978-

3-642-13953-6_3

[25] Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. 2008. Type inference for locality analysis of

distributed data structures. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’08). ACM, New York, 11–22. DOI:https://doi.org/10.1145/1345206.1345211

[26] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,

Christoph von Praun, and Vivek Sarkar. 2005. X10: An object-oriented approach to non-uniform cluster computing.

In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA’05). ACM, New York, 519–538. DOI:https://doi.org/10.1145/1094811.1094852

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/1159876.1159889
https://doi.org/10.1145/1481861.1481866
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/2093328.2093337
https://doi.org/10.1007/978-3-642-24276-2_13
https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/3122848
https://doi.org/10.1145/2220365.2220369
https://doi.org/10.1109/IPDPS.2009.5160937
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1145/2632320.2632344
https://doi.org/10.1145/2038916.2038932
https://doi.org/doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1007/978-3-642-13953-6_3
https://doi.org/10.1007/978-3-642-13953-6_3
https://doi.org/10.1145/1345206.1345211
https://doi.org/10.1145/1094811.1094852

81:30 P. Weisenburger et al.

[27] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur Çetintemel, Ying Xing, and Stan

Zdonik. 2003. Scalable distributed stream processing. In Proceedings of the 1st Biennial Conference on Innovative Data

Systems Research (CIDR’03). http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf Accessed 2020-05-05.

[28] Adam Chlipala. 2015. Ur/Web: A simple model for programming the web. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’15). ACM, New York, 153–165.

DOI:https://doi.org/10.1145/2676726.2677004

[29] Kwanghoon Choi and Byeong-Mo Chang. 2019. A theory of RPC calculi for client–server model. Journal of Functional

Programming 29 (2019). DOI:https://doi.org/10.1017/S0956796819000029

[30] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin Zheng. 2007. Secure web

applications via automatic partitioning. ACM SIGOPS Operating Systems Review 41, 6 (Oct. 2007), 31–44. DOI:https://

doi.org/10.1145/1323293.1294265

[31] Stephen Chong, K. Vikram, and Andrew C. Myers. 2007. SIF: Enforcing confidentiality and integrity in web appli-

cations. In Proceedings of 16th USENIX Security Symposium (SS’07). USENIX Association, Berkeley, CA, Article 1,

16 pages. http://usenix.org/events/sec07/tech/full_papers/chong/chong.pdfAccessed 2020-05-05.

[32] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web programming without tiers. In Pro-

ceedings of the 5th International Conference on Formal Methods for Components and Objects (FMCO’06). Springer-

Verlag, Berlin, 266–296. DOI:https://doi.org/10.1007/978-3-540-74792-5_12

[33] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2008. The essence of form abstraction. In Proceedings

of the 6th Asian Symposium on Programming Languages and Systems (APLAS’08). Springer-Verlag, Berlin, 205–220.

DOI:https://doi.org/10.1007/978-3-540-89330-1_15

[34] Ezra E. K. Cooper and Philip Wadler. 2009. The RPC calculus. In Proceedings of the 11th ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming (PPDP’09). ACM, New York, 231–242. DOI:https://doi.org/10.

1145/1599410.1599439

[35] Gianpaolo Cugola and Alessandro Margara. 2013. Deployment strategies for distributed complex event processing.

Computing 95, 2 (Feb. 2013), 129–156. DOI:https://doi.org/10.1007/s00607-012-0217-9

[36] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 2016. 43 years of actors: A taxonomy of actor models

and their key properties. In Proceedings of the 6th International Workshop on Programming Based on Actors, Agents,

and Decentralized Control (AGERE’16). ACM, New York, 31–40. DOI:https://doi.org/10.1145/3001886.3001890

[37] Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter. 2015. Partitioned global

address space languages. Comput. Surveys 47, 4, Article 62 (May 2015), 27 pages. DOI:https://doi.org/10.1145/2716320

[38] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM

51, 1 (Jan. 2008), 107–113. DOI:https://doi.org/10.1145/1327452.1327492

[39] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolfgang De Meuter. 2006. Ambient-

oriented programming in ambienttalk. In Proceedings of the 20th European Conference on Object-Oriented Program-

ming (ECOOP’06). Springer-Verlag, Berlin, 230–254. DOI:https://doi.org/10.1007/11785477_16

[40] Gwenaël Delaval, Alain Girault, and Marc Pouzet. 2008. A type system for the automatic distribution of higher-order

synchronous dataflow programs. In Proceedings of the 2008 ACM SIGPLAN-SIGBED Conference on Languages, Com-

pilers, and Tools for Embedded Systems (LCTES’08). ACM, New York, 101–110. DOI:https://doi.org/10.1145/1375657.

1375672

[41] Anton Ekblad and Koen Claessen. 2014. A seamless, client-centric programming model for type safe web appli-

cations. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell (Haskell’14). ACM, New York, 79–89.

DOI:https://doi.org/10.1145/2633357.2633367

[42] Stefan Fehrenbach and James Cheney. 2019. Language-integrated provenance by trace analysis. In Proceedings of

the 17th ACM SIGPLAN International Symposium on Database Programming Languages (DBPL’19). ACM, New York,

74–84. DOI:https://doi.org/10.1145/3315507.3330198

[43] Haxe Foundation. 2005. Haxe cross-platform toolkit. http://haxe.org. Accessed 2020-05-05.

[44] Martin Fowler. 2010. Domain Specific Languages (1st ed.). Addison-Wesley Professional.

[45] Simon Fowler. 2020. Model-view-update-communicate: Session types meet the elm architecture. In Proceedings of

the 34rd European Conference on Object-Oriented Programming (ECOOP 2019) (Leibniz International Proceedings in

Informatics (LIPIcs)). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 29.

[46] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional asynchronous session types:

Session types without tiers. In Proceedings of the ACM on Programming Languages 3, POPL, Article 28 (Jan. 2019),

29 pages. DOI:https://doi.org/10.1145/3290341

[47] David Garlan and Mary Shaw. 1994. An Introduction to Software Architecture. Technical Report. Pittsburgh, PA..

http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf Accessed 2020-05-05.

[48] David Gelernter. 1985. Generative communication in Linda. ACM Transactions on Programming Languages and Sys-

tems 7, 1 (Jan. 1985), 80–112. DOI:https://doi.org/10.1145/2363.2433

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

http://www-db.cs.wisc.edu/cidr/cidr2003/program/p23.pdf
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1017/S0956796819000029
https://doi.org/10.1145/1323293.1294265
https://doi.org/10.1145/1323293.1294265
http://usenix.org/events/sec07/tech/full_papers/chong/chong.pdf
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-89330-1_15
https://doi.org/10.1145/1599410.1599439
https://doi.org/10.1145/1599410.1599439
https://doi.org/10.1007/s00607-012-0217-9
https://doi.org/10.1145/3001886.3001890
https://doi.org/10.1145/2716320
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/11785477_16
https://doi.org/10.1145/1375657.1375672
https://doi.org/10.1145/1375657.1375672
https://doi.org/10.1145/2633357.2633367
https://doi.org/10.1145/3315507.3330198
http://haxe.org
https://doi.org/10.1145/3290341
http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf
https://doi.org/10.1145/2363.2433

A Survey of Multitier Programming 81:31

[49] Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco Visser. 2008. WebDSL: A domain-specific language

for dynamic web applications. In Companion to the 23rd ACM SIGPLAN Conference on Object-Oriented Programming

Systems Languages and Applications (OOPSLA Companion’08). ACM, New York, 779–780. DOI:https://doi.org/10.

1145/1449814.1449858

[50] Object Management Group. 1993. The Common Object Request Broker: Architecture and Specification. Wiley-QED.

[51] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. 2009. Ferry – database-supported program execution.

In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD’09). ACM, New

York, 1063–1066. DOI:https://doi.org/10.1145/1559845.1559982

[52] Arjun Guha, Jean-Baptiste Jeannin, Rachit Nigam, Jane Tangen, and Rian Shambaugh. 2017. Fission: Secure dynamic

code-splitting for javascript. In Proceedings of the 2nd Summit on Advances in Programming Languages (SNAPL

2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner, Rastislav Bodík, and Shriram

Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 5:1–5:13.

DOI:https://doi.org/10.4230/LIPIcs.SNAPL.2017.5

[53] Philipp Haller and Martin Odersky. 2009. Scala actors: Unifying thread-based and event-based programming. Theo-

retical Computer Science 410, 2–3 (Feb. 2009), 202–220. DOI:https://doi.org/10.1016/j.tcs.2008.09.019

[54] Seif Haridi, Peter Van Roy, and Gert Smolka. 1997. An overview of the design of distributed oz. In Proceedings of the

2nd International Symposium on Parallel Symbolic Computation (PASCO’97). ACM, New York, 176–187. DOI:https://

doi.org/10.1145/266670.266726

[55] Zef Hemel and Eelco Visser. 2011. Declaratively programming the mobile web with mobl. In Proceedings of the 2011

ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA’11).

ACM, New York, 695–712. DOI:https://doi.org/10.1145/2048066.2048121

[56] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular actor formalism for artificial intelligence.

In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI’73). Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, 235–245. http://ijcai.org/Proceedings/73/Papers/027B.pdf Accessed 2020-05-05.

[57] Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation passing style for

effect handlers. In Proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction

(FSCD 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Dale Miller (Ed.), Vol. 84. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 18:1–18:19. DOI:https://doi.org/10.4230/LIPIcs.FSCD.2017.18

[58] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker, and Ion Stoica. 2003. Querying

the internet with PIER. In Proceedings of the 29th International Conference on Very Large Data Bases (VLDB’03). VLDB

Endowment, 321–332. DOI:https://doi.org/10.1016/B978-012722442-8/50036-7

[59] Galen C. Hunt and Michael L. Scott. 1999. The coign automatic distributed partitioning system. In Proceedings of

the 3rd Symposium on Operating Systems Design and Implementation (OSDI’99). USENIX Association, Berkeley, CA,

187–200. http://usenix.org/events/osdi99/full_papers/hunt/hunt.pdf Accessed 2020-05-05.

[60] Ming-Yee Iu, Emmanuel Cecchet, and Willy Zwaenepoel. 2010. JReq: Database queries in imperative languages.

In Proceedings of the 19th Joint European Conference on Theory and Practice of Software, International Conference

on Compiler Construction (CC/ETAPS’10). Springer-Verlag, Berlin, 84–103. DOI:https://doi.org/10.1007/978-3-642-

11970-5_6

[61] Ahmad Jbara and Dror G. Feitelson. 2015. How programmers read regular code: A controlled experiment using eye

tracking. In Proceedings of the 23rd IEEE International Conference on Program Comprehension (ICPC’15). IEEE Press,

Piscataway, NJ, 244–254. DOI:https://doi.org/10.1109/ICPC.2015.35

[62] JetBrains. 2009. Kotlin programming language. http://kotlinlang.org. Accessed 2020-05-05.

[63] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. 1994. A Note on Distributed Computing. Technical

Report. Sun Microsystems, Inc., Mountain View, CA.

[64] Federico Kereki. 2010. Essential GWT: Building for the Web with Google Web Toolkit 2 (1st ed.). Addison-Wesley

Professional.

[65] Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2015.

Tracing software developers’ eyes and interactions for change tasks. In Proceedings of the the 10th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE’15). ACM, New York, 202–213. DOI:https://doi.org/10.1145/2786805.2786864

[66] Khronos OpenCL Working Group. 2009. The opencl specification. In Proceedings of the 2009 IEEE Hot Chips 21 Sym-

posium (HCS’09). 314. DOI:https://doi.org/10.1109/HOTCHIPS.2009.7478342

[67] Robert Klepper and Douglas Bock. 1995. Third and fourth generation language productivity differences. Commun.

ACM 38, 9 (Sept. 1995), 69–79. DOI:https://doi.org/10.1145/223248.223268

[68] Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Rodrigues. 2015. Pixida: Optimizing data

parallel jobs in wide-area data analytics. Proceedings of the VLDB Endowment 9, 2 (Oct. 2015), 72–83. DOI:https://

doi.org/10.14778/2850578.2850582

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/1559845.1559982
https://doi.org/10.4230/LIPIcs.SNAPL.2017.5
https://doi.org/10.1016/j.tcs.2008.09.019
https://doi.org/10.1145/266670.266726
https://doi.org/10.1145/266670.266726
https://doi.org/10.1145/2048066.2048121
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2017.18
https://doi.org/10.1016/B978-012722442-8/50036-7
http://usenix.org/events/osdi99/full_papers/hunt/hunt.pdf
https://doi.org/10.1007/978-3-642-11970-5_6
https://doi.org/10.1007/978-3-642-11970-5_6
https://doi.org/10.1109/ICPC.2015.35
http://kotlinlang.org
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1145/223248.223268
https://doi.org/10.14778/2850578.2850582
https://doi.org/10.14778/2850578.2850582

81:32 P. Weisenburger et al.

[69] Geetika T. Lakshmanan, Ying Li, and Rob Strom. 2008. Placement strategies for internet-scale data stream systems.

IEEE Internet Computing 12, 6 (Nov. 2008), 50–60. DOI:https://doi.org/10.1109/MIC.2008.129

[70] Thomas D. LaToza, David Garlan, James D. Herbsleb, and Brad A. Myers. 2007. Program comprehension as fact

finding. In Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’07). ACM, New York, 361–370. DOI:
https://doi.org/10.1145/1287624.1287675

[71] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining mental models: A study of developer work

habits. In Proceedings of the 28th International Conference on Software Engineering (ICSE’06). ACM, New York, NY,

USA, 492–501. DOI:https://doi.org/10.1145/1134285.1134355

[72] Orion Sky Lawlor. 2011. Embedding opencl in c++ for expressive GPU programming. In Proceedings of the 5th In-

ternational Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing

(WOLFHPC’11). http://hpc.pnl.gov/conf/wolfhpc/2011/papers/L2011.pdf Accessed 2020-05-05.

[73] Daan Leijen. 2014. Koka: Programming with row polymorphic effect types. In Proceedings of the 5th Workshop on

Mathematically Structured Functional Programming (Grenoble, France) (MSFP’14), Paul Levy and Neel Krishnaswami

(Eds.). 100–126. https://doi.org/10.4204/EPTCS.153.8

[74] Xavier Leroy. 2000. A modular module system. Journal of Functional Programming 10, 3 (May 2000), 269–303.

DOI:https://doi.org/10.1017/S0956796800003683

[75] Stanley Letovsky. 1986. Cognitive processes in program comprehension. In Papers Presented at the 1st Workshop on

Empirical Studies of Programmers on Empirical Studies of Programmers. Ablex Publishing Corp., Norwood, NJ, 58–79.

[76] Haoyi Li. 2012. ScalaTags. http://www.lihaoyi.com/scalatags/. Accessed 2020-05-05.

[77] Yu-Tzu Lin, Cheng-Chih Wu, Ting-Yun Hou, Yu-Chih Lin, Fang-Ying Yang, and Chia-Hu Chang. 2016. Tracking stu-

dents’ cognitive processes during program debugging – an eye-movement approach. IEEE Transactions on Education

59, 3 (2016), 175–186. DOI:https://doi.org/10.1109/TE.2015.2487341

[78] Sam Lindley and J. Garrett Morris. 2017. Lightweight functional session types. In Behavioural Types: From The-

ory to Tools, Simon Gay and António Ravara (Eds.). River Publishers, Chapter 12. DOI:https://doi.org/10.13052/rp-

9788793519817

[79] Barbara Liskov. 1988. Distributed programming in argus. Commun. ACM 31, 3 (March 1988), 300–312. DOI:https://

doi.org/10.1145/42392.42399

[80] Zhengqin Luo, Tamara Rezk, and Manuel Serrano. 2011. Automated code injection prevention for web applications.

In Proceedings of the 2011 International Conference on Theory of Security and Applications (TOSCA’11). Springer-

Verlag, Berlin, 186–204. DOI:https://doi.org/10.1007/978-3-642-27375-9_11

[81] Dragos Manolescu, Brian Beckman, and Benjamin Livshits. 2008. Volta: Developing distributed applications by re-

compiling. IEEE Software 25, 5 (Sept. 2008), 53–59. DOI:https://doi.org/10.1109/MS.2008.131

[82] Nenad Medvidovic and Richard N. Taylor. 2000. A classification and comparison framework for software architecture

description languages. IEEE Transactions on Software Engineering 26, 1 (Jan. 2000), 70–93. DOI:https://doi.org/10.

1109/32.825767

[83] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to develop domain-specific languages.

Comput. Surveys 37, 4 (Dec. 2005), 316–344. DOI:https://doi.org/10.1145/1118890.1118892

[84] Heather Miller, Philipp Haller, Normen Müller, and Jocelyn Boullier. 2016. Function passing: A model for typed,

distributed functional programming. In Proceedings of the 2016 ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming and Software (Onward! 2016). ACM, New York, 82–97. DOI:https://doi.

org/10.1145/2986012.2986014

[85] Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A type-based foundation for closures in the age

of concurrency and distribution. In Proceedings of the 28th European Conference on Object-Oriented Programming

(ECOOP’14). Springer-Verlag, Berlin, 308–333. DOI:https://doi.org/10.1007/978-3-662-44202-9_13

[86] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. 2005. Concurrency among strangers: Programming in E

as plan coordination. In Proceedings of the 1st International Conference on Trustworthy Global Computing (TGC’05).

Springer-Verlag, Berlin, 195–229. DOI:https://doi.org/10.1007/11580850_12

[87] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. 2012. Scala-virtualized. In Proceedings of the ACM

SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation (PEPM’12). ACM, New York, 117–120.

DOI:https://doi.org/10.1145/2103746.2103769

[88] Tom Murphy, VII, Karl Crary, and Robert Harper. 2007. Type-safe distributed programming with ML5. In Proceedings

of the 3rd Conference on Trustworthy Global Computing (TGC’07). Springer-Verlag, Berlin, 108–123. DOI:https://doi.

org/10.1007/978-3-540-78663-4_9

[89] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi. 2014. Tierless programming

and reasoning for software-defined networks. In Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation (NSDI’14). USENIX Association, Berkeley, CA, 519–531. http://usenix.org/system/files/

conference/nsdi14/nsdi14-paper-nelson.pdf Accessed 2020-05-05.

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1109/MIC.2008.129
https://doi.org/10.1145/1287624.1287675
https://doi.org/10.1145/1134285.1134355
http://hpc.pnl.gov/conf/wolfhpc/2011/papers/L2011.pdf
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1017/S0956796800003683
http://www.lihaoyi.com/scalatags/
https://doi.org/10.1109/TE.2015.2487341
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/42392.42399
https://doi.org/10.1145/42392.42399
https://doi.org/10.1007/978-3-642-27375-9_11
https://doi.org/10.1109/MS.2008.131
https://doi.org/10.1109/32.825767
https://doi.org/10.1109/32.825767
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/2986012.2986014
https://doi.org/10.1145/2986012.2986014
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1007/11580850_12
https://doi.org/10.1145/2103746.2103769
https://doi.org/10.1007/978-3-540-78663-4_9
https://doi.org/10.1007/978-3-540-78663-4_9
http://usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf
http://usenix.org/system/files/conference/nsdi14/nsdi14-paper-nelson.pdf

A Survey of Multitier Programming 81:33

[90] Matthias Neubauer and Peter Thiemann. 2005. From sequential programs to multi-tier applications by program

transformation. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL’05). ACM, New York, 221–232. DOI:https://doi.org/10.1145/1040305.1040324

[91] Matthias Neubauer and Peter Thiemann. 2008. Placement inference for a client-server calculus. In Proceedings of the

35th International Colloquium on Automata, Languages and Programming, Part II (ICALP’08). Springer-Verlag, Berlin,

75–86. DOI:https://doi.org/10.1007/978-3-540-70583-3_7

[92] David Park. 1981. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI-Conference on The-

oretical Computer Science. Springer-Verlag, Berlin, 167–183. DOI:https://doi.org/10.1007/BFb0017309

[93] Dewayne E. Perry and Alexander L. Wolf. 1992. Foundations for the study of software architecture. ACM SIGSOFT

Software Engineering Notes 17, 4 (Oct. 1992), 40–52. DOI:https://doi.org/10.1145/141874.141884

[94] Per Persson and Ola Angelsmark. 2015. Calvin – merging cloud and IoT. Procedia Computer Science 52, The 6th Inter-

national Conference on Ambient Systems, Networks and Technologies, the 5th International Conference on Sustainable

Energy Information Technology (2015), 210–217. DOI:https://doi.org/10.1016/j.procs.2015.05.059

[95] Laure Philips, Joeri De Koster, Wolfgang De Meuter, and Coen De Roover. 2018. Search-based tier assignment for

optimising offline availability in multi-tier web applications. The Art, Science, and Engineering of Programming 2, 2

(Dec. 2018), 3:1–3:29. DOI:https://doi.org/10.22152/programming-journal.org/2018/2/3

[96] Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. 2014. Towards tierless web development

without tierless languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming & Software (Onward! 2014). ACM, New York, 69–81. DOI:https://doi.org/10.1145/

2661136.2661146

[97] Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. 2014. Towards tierless web development

without tierless languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming & Software (Onward! 2014). ACM, New York, 69–81. DOI:https://doi.org/10.1145/

2661136.2661146

[98] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and Margo Seltzer. 2006.

Network-aware operator placement for stream-processing systems. In Proceedings of the 22nd International Confer-

ence on Data Engineering (ICDE’06). IEEE Computer Society, Washington, DC, 49–60. DOI:https://doi.org/10.1109/

ICDE.2006.105

[99] Quill. 2015. http://getquill.io/. Accessed 2020-05-05.

[100] Gabriel Radanne and Jérôme Vouillon. 2018. Tierless web programming in the large. In Companion Proceedings of

the - Web Conference 2018 (WWW’18). International World Wide Web Conferences Steering Committee, Republic

and Canton of Geneva, Switzerland, 681–689. DOI:https://doi.org/10.1145/3184558.3185953

[101] Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. 2016. Eliom: A core ML language for tierless web program-

ming. In Proceedings of the 14th Asian Symposium on Programming Languages and Systems (APLAS’16). Springer-

Verlag, Berlin, 377–397. DOI:https://doi.org/10.1007/978-3-319-47958-3_20

[102] David Rajchenbach-Teller and Franois-Régis Sinot. 2010. Opa: Language support for a sane, safe and secure web. In

Proceedings of the OWASP AppSec Research. http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_

OPA_by_Rajchenbach-Teller.pdf Accessed 2020-05-05.

[103] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. 2007. R-OSGi: Distributed applications through software

modularization. In Proceedings of the ACM/IFIP/USENIX 2007 International Conference on Middleware (Middleware’07).

Springer-Verlag, Berlin, 1–20. DOI:https://doi.org/10.1007/978-3-540-76778-7_1

[104] Bob Reynders, Dominique Devriese, and Frank Piessens. 2014. Multi-tier functional reactive programming for the

web. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on

Programming & Software (Onward! 2014). ACM, New York, 55–68. DOI:https://doi.org/10.1145/2661136.2661140

[105] Bob Reynders, Frank Piessens, and Dominique Devriese. 2020. Gavial: Programming the web with multi-tier FRP. The

Art, Science, and Engineering of Programming 4, 3 (Feb. 2020), 6:1–6:32. DOI:https://doi.org/10.22152/programming-

journal.org/2020/4/6

[106] Julien Richard-Foy, Olivier Barais, and Jean-Marc Jézéquel. 2013. Efficient high-level abstractions for web pro-

gramming. In Proceedings of the 12th International Conference on Generative Programming: Concepts & Experiences

(GPCE’13). ACM, New York, 53–60. DOI:https://doi.org/10.1145/2517208.2517227

[107] Java RMI. 1999. Java Remote Method Invocation – Distributed Computing for Java. Technical Report. Sun Microsys-

tems, Inc., Mountain View, CA,. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html Ac-

cessed 2020-05-05.

[108] Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: A pragmatic approach to runtime code gen-

eration and compiled DSLs. In Proceedings of the 9th International Conference on Generative Programming and Com-

ponent Engineering (GPCE’10). ACM, New York, 127–136. DOI:https://doi.org/10.1145/1868294.1868314

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/1040305.1040324
https://doi.org/10.1007/978-3-540-70583-3_7
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1145/141874.141884
https://doi.org/10.1016/j.procs.2015.05.059
https://doi.org/10.22152/programming-journal.org/2018/2/3
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1145/2661136.2661146
https://doi.org/10.1109/ICDE.2006.105
https://doi.org/10.1109/ICDE.2006.105
http://getquill.io/
https://doi.org/10.1145/3184558.3185953
https://doi.org/10.1007/978-3-319-47958-3_20
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf
http://owasp.org/www-pdf-archive/OWASP_AppSec_Research_2010_OPA_by_Rajchenbach-Teller.pdf
https://doi.org/10.1007/978-3-540-76778-7_1
https://doi.org/10.1145/2661136.2661140
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.22152/programming-journal.org/2020/4/6
https://doi.org/10.1145/2517208.2517227
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
https://doi.org/10.1145/1868294.1868314

81:34 P. Weisenburger et al.

[109] Joachim W. Schmidt and Florian Matthes. 1994. The DBPL project: Advances in modular database programming.

Information Systems 19, 2 (March 1994), 121–140. DOI:https://doi.org/10.1016/0306-4379(94)90007-8

[110] Manuel Serrano, Erick Gallesio, and Florian Loitsch. 2006. Hop, a language for programming the web 2.0. In Com-

panion to the 21th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA Companion’06). ACM, New York.

[111] Manuel Serrano and Vincent Prunet. 2016. A glimpse of hopjs. In Proceedings of the 21st ACM SIGPLAN International

Conference on Functional Programming (ICFP’16). ACM, New York, 180–192. DOI:https://doi.org/10.1145/2951913.

2951916

[112] Manuel Serrano and Christian Queinnec. 2010. A multi-tier semantics for hop. Higher-Order and Symbolic Compu-

tation 23, 4 (Nov. 2010), 409–431. DOI:https://doi.org/10.1007/s10990-010-9061-9

[113] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair Allen-Williams, Pierre Habouzit,

and Viktor Vafeiadis. 2005. Acute: High-level programming language design for distributed computation. In Pro-

ceedings of the 10th ACM SIGPLAN International Conference on Functional Programming (ICFP’05). ACM, New York,

15–26. DOI:https://doi.org/10.1145/1086365.1086370

[114] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-free replicated data types. In

Proceedings of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (SSS’11).

Springer-Verlag, Berlin, 386–400. DOI:https://doi.org/10.1007/978-3-642-24550-3_29

[115] Slick. 2014. http://scala-slick.org/. Accessed 2020-05-05.

[116] Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowledge. IEEE Transactions on Software

Engineering 10, 5 (Sept. 1984), 595–609. DOI:https://doi.org/10.1109/TSE.1984.5010283

[117] Diomidis Spinellis. 2001. Notable design patterns for domain-specific languages. Journal of Systems and Software 56,

1 (Feb. 2001), 91–99. DOI:https://doi.org/10.1016/S0164-1212(00)00089-3

[118] Storm. 2011. http://storm.apache.org/. Accessed 2020-05-05.

[119] Isaac Strack. 2012. Getting Started with Meteor.js JavaScript Framework (1st ed.). Packt Publishing.

[120] Walid Taha and Tim Sheard. 1997. Multi-Stage programming with explicit annotations. In Proceedings of the 1997

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Amsterdam, The

Netherlands) (PEPM’97). ACM, New York, NY, USA, 203–217. https://doi.org/10.1145/258993.259019

[121] John A. Thywissen, Arthur Michener Peters, and William R. Cook. 2016. Implicitly distributing pervasively concur-

rent programs: Extended abstract. In Proceedings of the 1st Workshop on Programming Models and Languages for Dis-

tributed Computing (PMLDC’16). ACM, New York, Article 1, 4 pages. DOI:https://doi.org/10.1145/2957319.2957370

[122] Eli Tilevich and Yannis Smaragdakis. 2002. J-Orchestra: Automatic java application partitioning. In Proceedings of

the 16th European Conference on Object-Oriented Programming (ECOOP’02), Boris Magnusson (Ed.). Springer-Verlag,

Berlin, 178–204. DOI:https://doi.org/10.1007/3-540-47993-7_8

[123] Chris Tomlinson, Won Kim, Mark Scheevel, Vineet Singh, Becky Will, and Gul Agha. 1988. Rosette: An object-

oriented concurrent systems architecture. In Proceedings of the 1988 ACM SIGPLAN Workshop on Object-Based Con-

current Programming (OOPSLA/ECOOP Companion’88). ACM, New York, NY, USA, 91–93. DOI:https://doi.org/10.

1145/67386.67410

[124] Mads Torgersen. 2007. Querying in C#: How language integrated query (LINQ) works. In Companion to the 22nd ACM

SIGPLAN Conference on Object-Oriented Programming Systems and Applications Companion (OOPSLA Companion’07).

ACM, New York, 852–853. DOI:https://doi.org/10.1145/1297846.1297922

[125] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. 2014. An eye-tracking study assessing the compre-

hension of C++ and python source code. In Proceedings of the Symposium on Eye Tracking Research and Applications

(ETRA’14). ACM, New York, 231–234. DOI:https://doi.org/10.1145/2578153.2578218

[126] Arie van Deursen and Paul Klint. 1998. Little languages: Little maintenance?Journal of Software Maintenance:

Research and Practice 10, 2 (1998), 75–92. DOI:https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2〈75::AID-

SMR168〉3.0.CO;2-5

[127] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages: An annotated bibliography. ACM

SIGPLAN Notices 35, 6 (June 2000), 26–36. DOI:https://doi.org/10.1145/352029.352035

[128] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheidhauer. 1997. Mobile objects in

distributed oz. ACM Transactions on Programming Languages and Systems 19, 5 (Sept. 1997), 804–851. DOI:https://

doi.org/10.1145/265943.265972

[129] Carlos Varela and Gul Agha. 2001. Programming dynamically reconfigurable open systems with SALSA. ACM SIG-

PLAN Notices 36, 12 (Dec. 2001), 20–34. DOI:https://doi.org/10.1145/583960.583964

[130] Paolo Viotti and Marko Vukolić. 2016. Consistency in non-transactional distributed storage systems. Comput. Sur-

veys 49, 1, Article 19 (June 2016), 34 pages. DOI:https://doi.org/10.1145/2926965

[131] Moisés Viñas, Zeki Bozkus, and Basilio B. Fraguela. 2013. Exploiting heterogeneous parallelism with the heteroge-

neous programming library. J. Parallel and Distrib. Comput. 73, 12 (Dec. 2013), 1627–1638. DOI:https://doi.org/10.

1016/j.jpdc.2013.07.013

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1016/0306-4379(94)90007-8
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1007/s10990-010-9061-9
https://doi.org/10.1145/1086365.1086370
https://doi.org/10.1007/978-3-642-24550-3_29
http://scala-slick.org/
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1016/S0164-1212(00)00089-3
http://storm.apache.org/
https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/2957319.2957370
https://doi.org/10.1007/3-540-47993-7_8
https://doi.org/10.1145/67386.67410
https://doi.org/10.1145/67386.67410
https://doi.org/10.1145/1297846.1297922
https://doi.org/10.1145/2578153.2578218
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/265943.265972
https://doi.org/10.1145/265943.265972
https://doi.org/10.1145/583960.583964
https://doi.org/10.1145/2926965
https://doi.org/10.1016/j.jpdc.2013.07.013
https://doi.org/10.1016/j.jpdc.2013.07.013

A Survey of Multitier Programming 81:35

[132] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed system development with ScalaLoci.

In Proceedings of the ACM on Programming Languages 2, (OOPSLA), Article 129 (Oct. 2018), 30 pages. DOI:https://

doi.org/10.1145/3276499

[133] Pascal Weisenburger and Guido Salvaneschi. 2019. Multitier modules. In Proceedings of the 33rd European Conference

on Object-Oriented Programming (ECOOP 2019) (Leibniz International Proceedings in Informatics (LIPIcs)), Alastair

F. Donaldson (Ed.), Vol. 134. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 3:1–3:29.

DOI:https://doi.org/10.4230/LIPIcs.ECOOP.2019.3

[134] Mark Weiser. 1981. Program slicing. In Proceedings of the 5th International Conference on Software Engineering

(ICSE’81). IEEE Press, Piscataway, NJ, 439–449.

[135] Marcus Westin. 2010. Fun: A programming language for the realtime web. http://marcuswest.in/essays/fun-intro/.

Accessed 2020-05-05.

[136] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. 2012. OpenACC – First experiences with real-

world applications. In Proceedings of the 18th International Conference on Parallel Processing (Euro-Par’12). Springer-

Verlag, Berlin, 859–870. DOI:https://doi.org/10.1007/978-3-642-32820-6_85

[137] David Wile. 2004. Lessons learned from real DSL experiments. Science of Computer Programming 51, 3 (June 2004),

265–290. DOI:https://doi.org/10.1016/j.scico.2003.12.006

[138] Limsoon Wong. 2000. Kleisli, a functional query system. Journal of Functional Programming 10, 1 (Jan. 2000), 19–56.

DOI:https://doi.org/10.1017/S0956796899003585

[139] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan Demers, Johannes Gehrke, and Jayavel Shanmugasundaram.

2007. A unified platform for data driven web applications with automatic client-server partitioning. In Proceedings

of the 16th International Conference on World Wide Web (WWW’07). ACM, New York, 341–350. DOI:https://doi.org/

10.1145/1242572.1242619

[140] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI’12).

USENIX Association, Berkeley, CA, 2. http://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

Accessed 2020-05-05.

[141] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. 2002. Secure program partitioning.

ACM Transactions on Computer Systems 20, 3 (Aug. 2002), 283–328. DOI:https://doi.org/10.1145/566340.566343

[142] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. 2008. Bridging the gap between interaction-

and process-oriented choreographies. In Proceedings of the 6th IEEE International Conference on Software Engineering

and Formal Methods (SEFM’8). IEEE Computer Society, 323–332. DOI:https://doi.org/10.1109/SEFM.2008.11

[143] Fabrizio Montesi. 2014. Kickstarting choreographic programming. In Proceedings of the 13th International Workshop

on Web Services and Formal Methods (WS-FM’14), Thomas Hildebrandt, António Ravara, Jan van der Werf, and

Matthias Weidlich (Eds.). Springer-Verlag, 3–10. DOI:https://doi.org/10.1007/978-3-319-33612-1_1

[144] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Jacopo Mauro. 2017. Dynamic chore-

ographies: Theory And implementation. Logical Methods in Computer Science 13, 2 (2017), 57 pages. DOI:https:

//doi.org/10.23638/LMCS-13(2:1)2017

[145] Luís Cruz-Filipe and Fabrizio Montesi. 2016. Choreographies in practice. In Proceedings of the 36th IFIP International

Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE’16), Elvira Albert and Ivan

Lanese (Eds.). Springer-Verlag, 114–123. DOI:https://doi.org/10.1007/978-3-319-39570-8_8

[146] Alberto Lluch Lafuente, Flemming Nielson, and Hanne Riis Nielson. 2015. Discretionary information flow control

for interaction-oriented specifications. In Logic, Rewriting, and Concurrency. Lecture Notes in Computer Science,

Vol. 9200. Springer-Verlag, 427–450. DOI:https://doi.org/10.1007/978-3-319-23165-5_20

[147] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: Multiparty asynchronous global program-

ming. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’13). ACM, 263–274.

[148] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2020. Choreographies as Objects.

[149] W3C WS-CDL Working Group. 2005. Web Services Choreography Description Language Version 1.0. http://www.

w3.org/TR/ws-cdl-10/. Accessed 2020-05-05.

[150] J. C. M. Baeten. 2005. A brief history of process algebra. Theoretical Computer Science 335, 2–113 (2005), 131–146.

DOI:https://doi.org/10.1016/j.tcs.2004.07.036

[151] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. 2014. Service-Oriented Programming with Jolie. Springer-

Verlag, Berlin, Heidelberg, 81–107. https://doi.org/10.1007/978-1-4614-7518-7_4

Received August 2019; revised February 2020; accepted April 2020

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.

https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
http://marcuswest.in/essays/fun-intro/
https://doi.org/10.1007/978-3-642-32820-6_85
https://doi.org/10.1016/j.scico.2003.12.006
https://doi.org/10.1017/S0956796899003585
https://doi.org/10.1145/1242572.1242619
https://doi.org/10.1145/1242572.1242619
http://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://doi.org/10.1145/566340.566343
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.23638/LMCS-13(2:1)2017
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-23165-5_20
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1007/978-1-4614-7518-7_4

