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Multitier programming deals with developing the components that pertain to different tiers in the system (e.g.,

client and server), mixing them in the same compilation unit. In this paradigm, the code for different tiers is

then either generated at run time or it results from the compiler splitting the codebase into components that

belong to different tiers based on user annotations, static analysis, types, or a combination of these. In the Web

context, multitier languages aim at reducing the distinction between client and server code, by translating

the code that is to be executed on the clients to JavaScript or by executing JavaScript on the server, too.

Ultimately, the goal of the multitier approach is to improve program comprehension, simplify maintenance

and enable formal reasoning about the properties of the whole distributed application.

A number of multitier research languages have been proposed over the last decade, which support vari-

ous degrees of multitier programming and explore different design tradeoffs. In this article, we provide an

overview of the existing solutions, discuss their positioning in the design space, and outline open research

problems.
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1 INTRODUCTION

Developing distributed systems is widely recognized as a complex and error-prone task. A num-
ber of aspects complicate programming distributed software, including concurrent execution on
different nodes, the need to adopt multiple languages or runtime environments (e.g., JavaScript
for the client and Java for the server), and the need to properly handle complex communication
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patterns considering synchronicity/asynchronicity, consistency as well as low-level concerns such
as data serialization and format conversion. Over the years, developers and practitioners have
tackled these challenges with methods that operate at different levels. Various middlewares ab-
stract over message propagation (e.g., Linda [48]). Primitives for remote communication (RPC, e.g.,
CORBA [50], RMI [107]) give programmers the illusion of distribution transparency. Decoupling
in the software architecture improves concurrency and fault tolerance (e.g., the Actor model [56]).
Finally, out-of-the-box specialized frameworks can manage fault recovery, scheduling and distri-
bution automatically (e.g., MapReduce [38]).

A radically innovative solution has been put forward by the so-called multitier programming

(MT) approach (sometimes referred to as tierless programming). MT programming consists of de-
veloping the components that pertain to different tiers in the system (e.g., client and server), mixing
them in the same compilation unit. Code for different tiers is generated at run time or split by the
compiler into components that belong to different tiers based on user annotations and static anal-
ysis, types, or a combination of these.

A number of MT research languages have been proposed over the last decade, demonstrating the
advantages of this paradigm (e.g., [12, 28, 32, 110]), including improving software comprehension,
enhancing software design, enabling formal reasoning and ameliorating maintenance. In parallel,
a number of industrial solutions include concepts from MT programming (e.g., [9], [13], [119]),
showing that this approach has great potential in practice.

The success of the MT paradigm has led to a variety of solutions that occupy different points
in the design space. These solutions mix techniques (e.g., compile time vs. run time splitting) and
design choices (e.g., placement of compilation units vs. placement of single functions) that often de-
pend on the application domain as well as on the software application stack. As a result, it is hard to
get a complete picture of the existing tradeoffs based on a precise taxonomy of the available design
decisions. In this articles, we fill this gap, providing researchers and practitioners with an overview
of MT languages and of the fundamental design decisions that this paradigm entails. After pre-
senting a selection of influential MT languages, we systematically analyze existing MT approaches
along various axes, highlighting the most important achievements for each language. Finally, we
provide an overview of related research areas and of the open research challenges in the field.

This article is structured as follows: Section 2 introduces MT programming, Section 3 presents
concrete examples of MT programming languages to implement a reference application, Section 4
discusses existing MT languages according to our analysis axes, Section 5 provides an overview
of open research issues in the area, Section 6 presents approaches that are closely related to MT
programming, and Section 7 concludes.

2 MULTITIER PROGRAMMING IN A NUTSHELL

The different components of a distributed application are executed on different tiers, where each
tier can run on a different machine in a network. For example, a 3-tier (or 3-layer) application is
organized into three major parts—usually presentation, application processing, and data manage-

ment —residing in different network locations [19]. One of the advantages of this approach is that,
by organizing a system into tiers, the functionality that is encapsulated into one of the tiers can
be modified independently, instead of redesigning the entire application.

As a result of this architectural choice, however, a crosscutting functionality that belongs to
multiple tiers is separated among several compilation units. For example, in the Web setting,
functionality is often scattered across client and server. Also, in many cases, each layer is im-
plemented in a different programming language depending on the technology of the underlying
layer, e.g., JavaScript for the browser-based interface, Java for the server-side application logic,
and SQL for the database.
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Fig. 1. Multitier Programming.

In an MT programming language, a single language can be used to program different tiers, often
adopting different compilation backends based on the target tier (e.g., JavaScript for the browser,
Java for the server). As a result, a functionality that spans over multiple tiers can be developed
within the same compilation unit. The compiler takes care of generating multiple deployable units
(Figure 1) starting from a single MT program as well as of generating the communication code
that is required for such modules to interact during program execution.

2.1 Benefits of Multitier Programming

In this section, we provide an overview of the main advantages offered by the MT language design.
We report the main claims found in literature and refer to the sources where these are discussed.

2.1.1 Higher Abstraction Level. An important advantage of MT programming is that it enables
abstracting over a number of low-level details relevant to programming distributed systems. As a
result, software development is simplified and programmers can work at a higher level of abstrac-
tion [132]. There are different aspects to consider. First, developers do not face the issue of dealing
with error-prone aspects like network communication, serialization, and data format conversions
between different tiers [101]. Second, with MT programming, there is no need to design the inter-
tier APIs, for example specifying the REST API a server exposes to clients. The technologies used
for inter-tier communication are usually transparent to the developer [110] and a detail of the
compilation approach.

2.1.2 Improved Software Design. In many distributed applications, the boundaries between
hosts and the boundaries between functionalities do not necessarily coincide, i.e., a single func-
tionality can span multiple locations and a single location can host multiple functionalities. For
example, retrieving a list of recent emails requires a search on the server, filtering the result on the
client and displaying the result. All these operations conceptually pertain to the same functionality.
Programming each location separately may result in two design issues. First, it can compromise
modularity because functionality (e.g., email retrieval) is scattered across the codebases of differ-
ent hosts. Second, it is error-prone because of code repetition. For example, encryption requires
encrypting and decrypting data on both ends of the communication channel, and the associated
functions need to be available on both the client and the server. In contrast, MT programming
allows for developing a functionality once and then place it where required [40].

2.1.3 Formal Reasoning. Formal reasoning can benefit from MT design because MT languages
model distributed applications as a whole as well as reify a number of aspects of distributed soft-
ware that are usually left implicit, like placement, components of the distributed system, and the
boundaries among tiers. Hence, it becomes easier to formally reason about software properties
considering the whole system at once instead of each component in isolation. For example, re-
searchers have developed methods to reason about concurrency [90] and security [10] considering
information flow in the whole system. Also, performance can be improved by eliminating dynamic

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.



81:4 P. Weisenburger et al.

references of global pointers [25]. Finally, researchers considered domain-specific properties, such
as reachability in software defined networks via verification [89].

2.1.4 Code Maintenance. MT programming simplifies the process of modifying an existing soft-
ware system. Two cases are particularly interesting for MT. First, migrating functionality among
different tiers does not require a complete rewrite in a different language [49]. For example, vali-
dating user input should already happen on the client-side to improve usability and must happen
on the server to enforce input validation before further processing. Both validation functions share
the same code. Second, it is easier to migrate an application among different platforms [43]. For
example, in principle, the client-side logic of a client–server desktop application can be migrated
to the Web just by changing the compilation target of the client side to JavaScript.

2.1.5 Program Comprehension. Program comprehension refers to the complexity (time, re-
quired expertise) that a developer faces to come up with a correct mental model of the behav-
ior of a program [116]. A crucial advantage of MT programming is that it simplifies reasoning
about data flow over multiple hosts because data flows that belong to a certain functionality are
not interrupted by the modularization across the tier axis and by the details of communication
code—simplifying development as well as debugging [81]. We are, however, not aware of empiri-
cal studies or controlled experiments that measure the advantage of MT programming in terms of
program comprehension.

2.2 An Overview of Multitier Languages

In this survey, we compare MT languages, i.e., languages that support implementing different tiers
of a distributed system within a single compilation unit. This survey focuses on homogeneous MT
programming, where tiers follow the same model of computation and have similar processing ca-
pabilities. Databases are an example for a tier with a computational model that is typically different
from the one of the tier that accesses the database, such as a web server. For MT languages that
support heterogeneous tiers, such as databases, we only briefly describe the language features that
are supported. Table 1 lists the MT approaches we discuss systematically and related approaches
on which we touch to point out their connection to MT programming.

Multitier Languages. In this article, we first show the implementation of a small application (Sec-
tion 3) in a representative selection of MT languages. These include two languages that pioneered
MT programming for the web (Hop/Hop.js and Links), two recent approaches focusing on web de-
velopment (Ur/Web and Eliom), an approach that also supports more general distributed systems
than web applications (ScalaLoci) and Google’s GWT, an industrial solution for cross compilation
to different tiers, that, however, provides no specific MT abstractions. We then conduct a system-
atic feature comparison (Section 4) among homogeneous MT languages (first segment of Table 1).

In this survey, we also include programming frameworks that target distributed applications
where several tiers are developed together, using the same language (second segment of Table 1).
For example, such frameworks reuse existing (non-MT) languages and communication libraries,
compiling to JavaScript for the client-side (GWT), using JavaScript for both the client and the
server (Meteor) or use an external configuration file for specifying the splitting (J-Orchestra). In
these languages, the presence of different tiers is clearly visible to the programmer either in the
form of configuration files or source annotations.

Related Approaches. In this survey, we also elaborate on closely related approaches (third seg-
ment of Table 1) that do not completely fit the programming model of the aforementioned MT
languages and the taxonomy of our feature comparison. Hence, we do not classify them system-
atically but highlight their connection to MT programming where they relate to the discussed MT
aspects. Such approaches (a) do not express tiers as part of their language abstractions because the
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Table 1. Overview of MT Languages

Language Short Description

Hop/Hop.js [110, 111] Dynamically typed language for developing web applications with a client–server
communication scheme and asynchronous callbacks.

Links [32, 46] Statically typed language that covers the client tier, the server tier and the access to
the database tier. It uses remote calls and message passing for client–server
communication.

Ur/Web [28] ML-like language with support for type-safe metaprogramming that provides
communication from client to server through remote procedure calls and from the
server to the client through message-passing channels.

Eliom/Ocsigen [9, 101] OCaml dialect that extends the ML module system to support MT modules
featuring separate compilation; used in the Ocsigen project.

ScalaLoci [132] Supports generic distributed systems, not only web applications, thanks to
placement types; features remote procedures and reactive programming
abstractions for remote communication.

StiP.js [95, 96] Allows developers to annotate the code that belongs to the client or to the server;
slicing detects the dependencies between the annotated fragment and the rest of
the code.

Gavial [104, 105] Domain-specific language embedded into Scala that provides reactive
programming abstractions for cross-tier communication.

Opa [102] Statically typed language that supports remote communication via remote
procedure calls and message-passing channels.

AmbientTalk/R [24, 39] Targets mobile applications with loosely coupled devices and provides reactive
programming abstractions on top of a publish–subscribe middleware.

ML5 [88] Represents different tiers by different possible worlds, as known from modal logic.

WebSharper [13] Allows developers to specify client-side members and members that are callable
remotely.

Haste [41] Uses monadic computations wrapping client and server code into different monads
and provides explicit remote calls.

Fun [135] Enables automatic synchronization of data across web clients without manually
implementing the communication with the server.

Koka [73] Supports splitting code among tiers using a type and effect system by associating
different effects to different tiers.

Multi-Tier Calculus [90] Provides a formal model to reason about the splitting of MT code into a client and a
server part and the communication between both parts through message channels.

Swift [30] Splits an application into client and server programs based on the flow of private
data, making sure that private data does not flow to untrusted clients.

Volta [81] Uses attributes to annotate classes with the tier they belong to, automatically
converting cross-tier method calls to remote invocations.

GWT [64] Compiles Java to JavaScript for the client and provides remote procedures for
client–server communication; developed at Google.

Meteor [119] A programming framework to use JavaScript for both the client and the server
code; provides remote procedures, publish–subscribe abstractions and shared state.

J-Orchestra [122] Uses configuration files to assign Java classes to tiers, rewriting the Java bytecode
to turn method invocations into remote calls.

(Continued)
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Table 1. Continued

Language Short Description

Hiphop [12] Extends Hop with synchronous data flows, focusing on guarantees on time and
memory bounds.

Distributed Orc [121] The runtime optimizes the placements of values; it provides location transparency
by giving local and remote operations the same semantics, which allows for
handling asynchrony and failures uniformly.

Jif/split [141] Splits a program into tiers based on the flow of private data, making sure that
private data do not flow to another tier.

Fission [52] Dynamically splits a program execution into client-side and server-side execution
based on the flow of private data, making sure that private data does not flow to
untrusted clients.

SIF [31] Checks the flow of private data in a web application, making sure that private data
does not flow to untrusted clients.

WebDSL [49] Domain-specific language for specifying the data model of web applications and
the web pages to view and edit data model objects.

Acute [113] Supports type-safe marshalling for remote interaction, versioning of program code
and dynamic code reloading, leaving the network communication mechanism to
libraries.

Mobl [55] Supports different concerns of developing the client-side of web applications, such
as the data model, the application logic and the user interface.

High-Level Abstractions for
Web Programming [106]

Provides a Scala EDSL that captures common tasks performed in web applications,
e.g., defining DOM fragments.

code is assigned to tiers transparently (Distributed Orc, Jif/split, and Fission). In this group, we also
include Hiphop, where the language extends an MT language but the extension itself does not add
any MT abstraction, and SIF, which uses GWT for JavaScript compilation as well as a client run-
time library, and WebDSL, where the language only represents the state of the data model. Other
approaches do not completely fit the MT programming model that we consider because they (b) do
not include cross-tier communication, intentionally leaving remote communication support to li-
braries, such as Acute and several languages for web applications Mobl, High-Level Abstractions
for Web Programming.

MT development shares with cross-compilation the goal of abstracting over different tiers as
cross compilation abstracts over the heterogeneity of different target platforms. Cross-compilers
include, e.g., Haxe or the Kotlin language, the JSweet Java to JavaScript compiler, the Bridge.NET
and the SharpKit C# to JavaScript compilers, and the Scala.js Scala to JavaScript compiler. Yet, these
solutions do not offer specific language-level support for distribution and remote communication.
This survey discusses the difference between cross-compilers and MT languages, but it does not
consider cross-compilers in detail.

3 A GLIMPSE OF MULTITIER LANGUAGES

In this section, we present languages that have pioneered MT programming and/or have been very
influential in recent years. To provide an intuition of how MT programming looks like using those
languages, we present the same example implemented in each language. As an example, we show
an Echo client–server application: The client sends a message to the server and the server returns
the same message to the client, where it is appended to a list of received messages. The application
is simple and self-contained, and—despite all the limitations of short and synthetic examples—it
gives us the chance to demonstrate different MT languages side by side.
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Listing 1. Echo application in Hop.js.

3.1 Hop

Hop [110] is a dynamically typed Scheme-based language. It follows the traditional approach of
modeling communication between client and server using asynchronous callbacks for received
messages and return values. JavaScript code is generated at run time and passed to the client. A
recent line of work has ported the results of Hop to a JavaScript-based framework, Hop.js [111],
which allows using JavaScript to program both the client and the server side.

Listing 1 shows the Echo application implemented in Hop.js. HTML can be embedded directly
in Hop code. HTML generated on the server (Line 2–14) is passed to the client. HTML generated
on the client can be added to the page using the standard DOM API (Line 6).

Hop supports bidirectional communication between a running server and a running client in-
stance through its standard library. In the Echo application, the client connects to the WebSocket
server through the standard HTML5 API (Line 5) and sends the current input value (Line 10). The
server opens a WebSocket server (Line 17) that returns the value back to the client (Line 20).

The language allows the definition of services, which are executed on the server and produce a
value that is returned to the client that invoked the service. For example, the echo service (Line 1)
produces the HTML page served to the web client of the Echo application. Thus, the code in a
service block is executed on the server.

Because of the ~{...} notation, the code for the onload (Line 4) and onclick (Line 10) han-
dlers is not immediately executed but the server generates the code for later execution on the
client. On the other hand, the ${...} notation escapes one level of program generation. The ex-
pressions hop.port (Line 5), event.data (Line 6) and input (Lines 9 and 10) are evaluated by the
outer server program and the values to which they evaluate are injected into the generated client
program. Hop supports full stage programming, i.e., ~{...} expressions can be arbitrarily nested
such that not only server-side programs can generate client-side programs but also client-side
programs are able to generate other client-side programs.

3.2 Links

Links [32] is a statically typed language that translates to SQL for the database tier and to JavaScript
for the web browser. The latter is a technique, which was pioneered by the typed query system
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Listing 2. Echo application in Links.

Kleisli [138] and adopted by Microsoft LINQ [124]. It allows embedding statically typed database
queries in Links. Recent work extended Links with algebraic effects [57], provenance tracking [42]
and session types [78] with support for exception handling [46]. Links’ Model-View-Update archi-
tecture [45] integrates session typing and GUI development.

Listing 2 shows the Echo application implemented in Links. Links uses annotations on functions
to specify whether they run on the client or on the server (Line 1 and 5). Upon request from the
client, the server executes the main function (Line 18), which constructs the code that is sent to the
client. Links allows embedding XML code (Lines 7–15). The l:name attribute (Line 10) declares an
identifier to which the value of the input field is bound and which can be used elsewhere (Line 9).
The code to be executed for the l:onsubmit handler (Line 9) is not immediately executed but
compiled to JavaScript for client-side execution. Curly braces indicate Links code embedded into
XML. The l:onsubmit handler sends the current input value item to the server by calling echo.
The item is returned by the server and appended to the list of received items using standard DOM
APIs. The call to the server (Line 9) does not block the client. Instead, the continuation on the
client is invoked when the result of the call is available. Client–server interaction is based on
resumption passing style: Using continuation passing style transformation and defunctionalization,
remote calls are implemented by passing the name of a function for the continuation and the data
needed to continue the computation. Rather than of constructing HTML forms manually, like in
the example, Links further supports formlets [33], an abstraction for composing HTML forms.

To access the database tier, Links features database expressions to represent database connec-
tions. For example, to store the list of received items in a server-side database, the expression
table "items" with (item: String) from database "list" refers to the items table in the
list database that contains records with a single item string field. Links supports language con-
structs for querying and updating databases—such as iterating over records using for, filtering
using where clauses, sorting using orderby or applying functions on lists, such as take and drop,
to datasets—which are compiled into equivalent SQL statements.

3.3 Ur/Web

Ur/Web [28] is a language in the style of ML, featuring an expressive type system to support
type-safe metaprogramming. The type system ensures correctness of a broad range of proper-
ties including (i) validity of generated HTML code, (ii) the types of values of HTML form fields
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Listing 3. Echo application in Ur/Web.

matching the types expected by their handlers or the types of columns of a database table, (iii) va-
lidity of SQL queries, (iv) lack of dead intra-application links, and (v) prevention of code injection
attacks. Remote procedure calls are executed atomically, with Ur/Web guaranteeing the absence
of observable interleaving operations.

Listing 3 shows the Echo application implemented in Ur/Web. Ur/Web allows embedding XML
code using <xml>...</xml> (Lines 6 and 7). The {...} notation embeds Ur/Web code into XML.
{[...]} evaluates an expression and embeds its value as a literal. Ur/Web supports functional
reactive programming for client-side user interfaces. The example defines an item source (Line 9),
whose value is automatically updated to the value of the input field (Line 13) when it is changed
through user input, i.e., it is reactive. The list source (Line 10) holds the list of received items from
the echo server. Sources, time-changing input values, and signals, time-changing derived values,
are Ur/Web’s reactive abstractions, i.e., signals recompute their values automatically when the
signals or sources from which they are derived change their value, facilitating automatic change
propagation. Upon clicking the button, the current value of list (Line 15) and item is accessed
(Line 16), then a remote procedure call to the server’s echo function is invoked (Line 17) and list
is updated with the item returned from the server (Line 18). To automatically reflect changes in
the user interface, a signal is bound to the signal attribute of the HTML pseudo-element <dyn>
(Line 22). The signal uses the mkhtml function (Line 24, defined in Line 4), which creates HTML
list elements. In addition to remote procedure calls—which initiate the communication from client
to server – Ur/Web supports typed message-passing channels, which the server can use to push
messages to the client.

Ur/Web integrates a domain-specific embedding of SQL for accessing the database tier with
clauses such as SELECT, FROM or ORDERBY. For example, a set of database records storing the
list of received items is specified by a table items : { item : string } declaration. Such table
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Listing 4. Echo application in Eliom.

declarations can be private to a module using an ML-style module system for encapsulating data-
base tables.

3.4 Eliom

Eliom [101] is an OCaml dialect designed in the context of the Ocsigen project [9] for develop-
ing client–server web applications. Ocsigen further provides mechanisms to support a number of
practical features necessary in modern applications, including session management and bidirec-
tional client–server communication through its standard library.

Listing 4 shows the Echo application in Eliom. Eliom extends let-bindings with section annota-

tions %client, %server and %shared —the latter indicates code that runs on both the client and
the server. The application starts with a call to Echo_app.register (Line 15). Eliom supports
cross-tier reactive values: The application generates a server-side event (Line 18) and a corre-
sponding client-side event (Line 19), which automatically propagates changes from the server to
the client. A reactive list (Line 20) holds the items received from the server. Mapping the list pro-
duces a list of corresponding HTML elements (Line 21), which can directly be inserted into the
generated HTML code (Line 26). Eliom supports a DSL for HTML, providing functions of the same
name as the HTML element they generate. Server-side code can contain nested fragments to be run
on the client ([%client ...], Line 23) or to be run on both the client and the server ([%shared
...], Line 21). Eliom uses injections (prefixed by ~%) to access values on the client side that were
computed on the server. The client-side representation of the event item_down is injected into a
client fragment to extend the reactive list with every item returned from the server (Line 25). The
make_input function (Line 5) generates the main user interface, which processes the stream of
button clicks (Line 10) and fires the up event for every item (Line 11). To fire the server-side up
event from the client-side, we inject the event via ~%up into the client fragment.
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Listing 5. Echo application in GWT.

3.5 Google Web Toolkit (GWT)

GWT [64] is an open source project developed at Google. Its design has been driven by a pragmatic
approach, mapping traditional Java programs to web applications. A GWT program is a Java Swing
application except that the source code is compiled to JavaScript for the client side and to Java
bytecode for the server side. Compared to fully-fledged MT programming, distributed code in
GWT is not developed in a single compilation unit nor necessarily in the same language. Besides
Java, in practice, GUIs often refer to static components in external HTML or XML files. Client and
server code reside in different Java packages. GWT provides RPC library support for cross-tier
communication.

Listing 5 shows the Echo application implemented in GWT. For the sake of brevity, we leave out
the external HTML file. The application adds an input field (Line d.9) and a button (Line d.10) to
container elements defined in the HTML file and registers a handler for click events on the button
(Line d.12). When the button is clicked, the echo method of the echoService is invoked with the
current item and a callback—to be executed when the remote call returns. When an item is returned
by the remote call, it is added to the list of received items (Line d.17). GWT requires developers
to specify both the interface implemented by the service (Line a.2) and the service interface for
invoking methods remotely using a callback (Line b.2). The implementation of the echo service
(Line c.2) simply returns the item sent from the client.

3.6 ScalaLoci

ScalaLoci [132] is a language that targets generic distributed systems rather than the Web only,
i.e., it is not restricted to a client–server architecture. To this end, ScalaLoci supports peer types
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Listing 6. Echo application in ScalaLoci.

to encode the different locations at the type level. Placement types are used to assign locations to
data and computations. ScalaLoci supports multitier reactives—language abstractions for reactive
programming that are placed on specific locations—for composing data flows cross different peers.

Listing 6 shows the Echo application implemented in ScalaLoci. The application first defines an
input field (Line 11) using the ScalaTags library [76]. The value of this input field is used in the click
event handler of a button (Line 15) to fire the message event with the current value of the input
field. The value is then propagated to the server (Line 6) and back to the client (Line 9). On the
client, the values of the event are accumulated using the list function and mapped to an HTML
list (Line 10). This list is then used in the HTML code (Line 16) to display the previous inputs.

4 ANALYSIS

In this section, we systematically analyze existing MT solutions along various axes. We consider
the following dimensions:

• Degrees of MT programming refers to the amount of MT abstractions supported by the lan-
guage. At one extreme of the spectrum, we find languages with dedicated MT abstractions
for data sharing among tiers and for communication. At the other end of the spectrum lie
languages where part of the codebase can simply be cross-compiled to a different target
platform (e.g., Java to JavaScript) to enhance the interoperability between tiers but do not
provide specific MT abstractions.

• Placement strategy describes how data and computations in the program are assigned to the
hosts in the distributed system, e.g., based on programmers’ decisions or based on automatic
optimization.

• Placement specification and granularity in MT languages refers to the means offered for
programmers to specify placement (e.g., code annotations, configuration files) and their
granularity level (e.g., per function, per class).

• Communication abstractions for communication among tiers are a crucial aspect in MT pro-
gramming since MT programming brings the code that belongs to different tiers to the same
compilation unit. MT approaches provide dedicated abstractions to simplify implementing
remote communication which differ considerably among languages.

• Formalization of MT languages considers the approach used to formally define the semantics
of the language and formally prove properties about programs.
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Table 2. Degrees of MT Programming

Compilation Approach Distribution Approach

Distribution No Distribution Abstractions

Multitier Transparent

Cross Compilation Hop Haxe
Links Kotlin
Opa JSweet
Ur/Web Bridge.NET
Eliom/Ocsigen SharpKit
Gavial Scala.js
ML5 WebDSL
ScalaLoci Mobl
WebSharper High-Level Abstractions
Haste for Web Programming
Swift
Volta
GWT

Uniform Compilation Hop.js Distributed Orc Hiphop
StiP.js Jif/split SIF
AmbientTalk/R Fission Acute
Fun (traditional languages)
Koka
Multi-Tier Calculus
J-Orchestra
Meteor

• Distribution topologies describe the variety of distributed architectures [47] (e.g., client–
server, peer-to-peer) that a language supports.

4.1 Degrees of MT Programming

Several programming frameworks for distributed systems have been influenced, to various de-
grees, by ideas from MT. In this section, we compare languages where MT programming is sup-
ported by dedicated abstractions, either by explicitly referring to placement in the language or
by using scoping in the same compilation unit to define remote communication, and approaches
that share similar goals to MT programming using compilation techniques that support different
targets (and tiers), but do not expose distribution as a language feature to the developer. Table 2
provides an overview of existing solutions concerning the degree of supported MT programming.
Specifically, it considers support for cross compilation and the supported language features for
distribution.

Multitier distribution provides a programming model that defines different tiers and offers
abstractions for developers to control the distribution.

Transparent distribution does not support code assignment to tiers as a reified language con-
struct. Splitting into tiers is computed transparently by the compiler or the runtime and
not part of the programming model.

No distribution abstractions do not provide language features specific to the distribution of
programs.
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When running distributed applications on different machines, approaches related to MT
programming either assume the same execution environment, where all tiers can be supported
by a uniform compilation scheme, or employ a cross-compilation approach to support different
target platforms. Cross-compilers can be used to support the development of distributed systems
(e.g., by compiling client-side code to JavaScript) but still require manual distribution of code and
do not offer abstractions for remote communication among components as MT languages do.
Traditional languages, falling into the bottom right corner of Table 2, neither support distribution
nor cross compilation. Hiphop [12] does not provide its own support for distribution but relies
on Hop’s [110] MT primitives. SIF [31] uses information flow control to ensure that private data
does not flow to untrusted clients. It is implemented on top of Java Servlets, which respond to
requests sent by web clients. Acute [113] is an OCaml extension that, although it does not support
distribution or cross compilation, provides type-safe marshalling for accessing resources remotely
based on transmitting type information at run time for developing distributed systems.

We provide examples for the multitier category, which is extensively discussed in the rest of
this article, and systematically analyze the second and third approach using transparent splitting
by the compiler or manual splitting and cross-compilation, respectively.

4.1.1 Dedicated MT Programming Abstractions. MT languages provide abstractions that reify
the placement of data and computations and allow programmers to directly refer to these con-
cepts in their programs. In Hop.js [111], inside the same expression, it is possible to switch be-
tween server and client code with ~{...} and ${...}, which can be arbitrarily nested. Similarly,
the Ur/Web [28] language provides the {...} escape operator. In ScalaLoci [132], placement is
part of the type system (placement types) and the type checker can reason about resource location
in the application. Eliom’s [101] placement annotations %client, %server and %shared allow
developers to allocate resources in the program at the granularity of variable declarations. Simi-
larly, Links [32] provides a client and a server annotation to indicate functions that should be
executed on the client or the server, respectively.

The MT languages above hide the mismatch between the different platforms underlying each
tier, abstracting over data representation, serialization and network protocols, enabling the com-
bination of code that belongs to different tiers within the same compilation unit. In addition, MT
concepts are reified in the language in the sense that language abstractions enable developers to
refer to tiers explicitly.

4.1.2 Compilers for Multitier Programming. Transparent distribution approaches enable using a
single language for different tiers and support compilation to tier-specific code, but do not provide
specific abstractions for MT programming. Splitting a program into different tiers based on security
concerns (Jif/split [141], Fission [52]) adopts information flow control techniques to ensure that
private data does not leak to untrusted tiers. Distributed Orc [121] automatically optimizes the
distribution of values at runtime to minimize communication cost.

Approaches that add compilation to a different platform for existing general-purpose languages
have been proposed by different vendors and organizations, targeting various languages and pro-
gramming platforms, e.g., the JSweet Java to JavaScript compiler, the Bridge.NET and the SharpKit
C# to JavaScript compilers and the Scala.js Scala to JavaScript compiler. Haxe [43] is a cross-
platform toolkit based on the statically typed object-oriented Haxe language that compiles to
JavaScript, PHP, C++, Java, C#, Python and Lua. The statically typed language Kotlin [62] for multi-
platform applications targets the JVM, Android, JavaScript and native code. Such approaches do
not support automatic separation into tiers – the developer has to keep the code for different tiers
separate, e.g., in different folders. Remote communication APIs are provided by libraries depend-
ing on the target platform (e.g., TCP sockets or HTTP). Such solutions are the most pragmatic:
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Table 3. Placement Strategy

Language Placement Strategy

Automatic Explicit
Hop/Hop.js · staged
Links · partitioned
Opa partitioned ·
StiP.js partitioned ·
Ur/Web · staged
Eliom/Ocsigen · staged
Gavial · partitioned
AmbientTalk/R · partitioned
ML5 · partitioned
ScalaLoci · partitioned
WebSharper · partitioned
Haste · partitioned
Fun · partitioned
Koka · partitioned
Multi-Tier Calculus partitioned ·
Swift partitioned ·
Volta · partitioned
J-Orchestra · partitioned
Meteor · partitioned
GWT · partitioned

They do not break compatibility with tooling—if already available—and provide a programming
model that is quite close to traditional programming. Developers do not significantly change the
way they reason about coding-distributed applications and do not need to learn completely new
abstractions.

Domain-specific languages take over tasks specific to (certain types of) distributed applica-
tions, such as constructing a client-side user interface based on a given data model. Richard-Foy
et al. [106] propose a Scala EDSL that captures common tasks performed in web applications, e.g.,
defining DOM fragments. Their approach allows specializing code generation depending on the
target platform, e.g., using the Scala XML library when compiling to Java bytecode or using the
browser’s DOM API when compiling to JavaScript. Mobl [55] is a DSL for building mobile web
applications in a declarative way providing language features for specifying the data model, the
application logic and the user interface. Mobl compiles to a combination of different target lan-
guages, HTML, CSS and JavaScript. It, however, targets the client side only.

4.2 Placement Strategy

The placement strategy is the approach adopted by MT languages to assign data and computations
in the program to the hosts comprising the distributed system. Table 3 classifies MT languages into
approaches where placement is done automatically and approaches where placement is explicitly

specified by the developer. Even for MT solutions with automatic placement, the assignment to
different hosts is an integral part of the programming model. For example, specific parts of the
code have a fixed placement (e.g., interaction with the web browser’s DOM must be on the client)
or the developer is given the ability to use location annotations to enforce a certain placement.
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The code that is assigned to different places is either (1) partitioned (statically or dynamically)
into different programs or (2) separated into different stages, where the execution of one stage
generates the next stage and can inject values computed in the current stage into the next one.
When accessing a value of another partition in approach (1), the value is looked up remotely over
the network and the local program continues execution with the remote value after receiving
it. For handling remote communication asynchronously, remote accesses are either compiled to
continuation-passing style or asynchronicity is exposed to the developer using local proxy objects
such as futures. Using approach (2) for web applications, the server stage runs and creates the
program to be sent to the client. When generating the client program, references to server-side
values are spliced into client code, i.e., the client program that is sent already contains the injected
server-side values. Such staged execution reduces communication overhead since server-side val-
ues accessed by the client are already part of the generated client program.

In the case of web applications, as response to an HTTP request, the server delivers the program
to the client which executes it in the browser. For MT languages that do not target web applications,
the programs that result from the splitting start independently on different hosts and connect to
other parts upon execution, e.g., using peer-to-peer service discovery in AmbientTalk/R.

We first consider placement based on the different functionalities of the application logic which
naturally belong to different tiers. Then we present approaches where there are multiple options
for placement and the MT programming framework assigns functionalities to tiers based on vari-
ous criteria such as performance optimization and privacy.

4.2.1 Placement Based on Functional Properties. In most MT languages, the placement of
each functionality is fully defined by the programmer by using an escaping/quoting mechanism
(Hop [110], Ur/Web [28], Eliom [101]), annotations (Links [32]) , or a type-level encoding (ML5 [88],
Gavial [105], ScalaLoci [132]). Placement allows separate parts of the MT program to execute on
different hosts. The compile-time separation into different components either relies on (whole-
)program analysis (Ur/Web, ML5) or supports modular separation (Eliom, ScalaLoci), where each
module can be individually split into multiple tiers. On the other hand, dynamic separation is
performed at run time (Links, Hop).

When the placement specification is incomplete, there is room for alternative placement choices;
in which case, slicing [134] detects the dependencies between the fragments manually assigned
by developers and the rest of the codebase, ultimately determining the splitting border. For ex-
ample, in StiP.js [95, 96], code fragments are assigned to a tier based on annotations, then slic-
ing uncovers the dependencies. This solution allows developing MT web applications in existing
general-purpose languages as well as retaining compatibility with development tools. In the slic-
ing process, placement can be constrained not only explicitly, but also based on values’ behavior,
e.g., inferring code locations using control flow analysis or rely on elements for which the location
is known (e.g., database access takes place on the server, interaction with the DOM takes place on
the client) [31, 97, 102]. This complicates the integration into an existing language, especially in
presence of effects, and is less precise than explicit annotations—hindering, e.g., the definition of
data structures that combine fragments of client code and other data [101].

4.2.2 Placement Strategies. For the functionalities that can execute both on the client and on
the server, MT approaches either place unannotated code both on the client and on the server (e.g.,
Links [32], Opa [102], ScalaLoci [132]) or compute the placement that minimizes the communica-
tion cost between tiers (e.g., Distributed Orc [121]). Neubauer and Thiemann [90, 91] allow a prop-
agation strategy to produce different balances for the amount of logic that is kept on the client and
on the server, starting the propagation from some predefined operators whose placement is fixed.
The propagation strategy uses a static analysis based on location preferences and communication
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Table 4. Placement Approach

Language Placement Specification Approach for given Granularity

Expression Binding Block Top-Level Binding Top-Level Block Class/Module File

Hop/Hop.js escaping/quoting · · annotation · · ·
Links · · · annotation · · ·
Opa · annotation and · · · · ·

static analysis

StiP.js · · · · annotation and · ·
static analysis

Ur/Web escaping/quoting · · dedicated · · ·
Eliom/Ocsigen escaping/quoting · · annotation · annotation ·
Gavial type · · · · · ·
AmbientTalk/R · · · · · dedicated ·
ML5 type · · · · · ·
ScalaLoci type · · type · · ·
WebSharper · · · annotation · annotation ·
Haste type · · · · · ·
Fun · · · dedicated · · ·
Koka · · · type · · ·
Multi-Tier Calculus static analysis · · · · · ·
Swift static analysis · · · · · ·
Volta · · · · · annotation ·
J-Orchestra · · · · · external ·
Meteor · · dynamic run · · · directory

time check

GWT · · · · · · directory

requirements to optimize performance (contrarily to many MT approaches where the choice is left
to the programmer). Jif/split [141] considers placement based on security concerns: Protection of
data confidentiality is the principle to guide the splitting. The input is a program with security
annotations and a set of trust declarations to satisfy. The distributed output program satisfies all
security policies. As a result, programmers can write code that is agnostic to distribution, but fea-
tures strong guarantees on information flow. Similarly, Swift [30] also partitions programs based
on security labels, but focuses on the Web domain, where the trust model assumes a trusted server
that interacts with untrusted clients.

An exception to the approaches above—which all adopt a compile time splitting strategy—is
Fission [52], which uses information flow control to separate client and server tiers at run time. The
dynamic approach allows supporting JavaScript features that are hard to reason about statically,
such as eval, as well as retaining better compatibility with tooling.

4.3 Placement Specification and Granularity

Placement specification in MT languages is defined at different granularity levels. Languages that
allow composing code belonging to different hosts in the same compilation unit follow various
approaches to specify the execution location. Table 4 classifies the MT languages based on the
placement specification approach (Section 4.3.1) and the granularity given in the first row (Sec-
tion 4.3.2). For example, Hop.js allows escaping arbitrary expressions to delimit code of a different
tier. Links uses annotations on top-level bindings to specify the tier to which a binding belongs.

4.3.1 Placement Specification. We identified the following strategies used by MT languages to
determine placement:
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Dedicated tier assignment always associates certain language constructs to a tier, e.g., top-level
name bindings are always placed on the server or every class represents a different tier.

Annotations specify the tier to which the annotated code block or definition belongs, driving
the splitting process.

Escaping/quoting mechanisms are used when the surrounding program is placed on a specific
tier, e.g., the server, and nested expressions are escaped/quoted to delimit the parts of the
code that run on another specific tier, e.g., the client.

Types of expressions determine the tier, making placement part of the type system.
Static analysis determines the tier assignment at compile-time based on functional properties

of the code (such as access to a database or access to the DOM of the webpage).
Dynamic run time checks allow developers to check at run time which tier is currently execut-

ing the running code, and select the tier-specific behavior based on such condition.

The following strategies are used by approaches lacking language-level support for placement:

External configuration files assign different parts of the code (such as classes) to different tiers.
Different directories are used to distinguish among the files containing the code for different

tiers.

Links [32] and Opa [102] provide dedicated syntax for placement (e.g., fun f() client and fun
f() server in Links). Volta [81] relies on the C# base language’s custom attribute annotations
to indicate the placement of abstractions (e.g., [RunAt("Client")] class C). WebSharper [13]
uses a JavaScript F# custom attribute to instruct the compiler to translate a .NET assem-
bly, a module, a class or a class member to JavaScript (e.g., [<JavaScript>] let a = ...).
Stip.js [95] interprets special forms of comments (e.g., /* @client */ {...} and /* @server
*/ {...}). While MT languages usually tie the placement specification closely to the code and
define it in the same source file, approaches like J-Orchestra [122], require programmers to assign
classes to the client and server sites in an XML configuration file.

ML5 [88] captures the placement explicitly in the type of an expression. For example, an expres-
sion expr of type string @ server can be executed from the home world using from server
get expr. The placement of every expression is determined by its type and the compiler ensures
type-safe composition of remote expressions through from ... get. Similarly, in ScalaLoci [132],
a binding value of type String on Server can be accessed remotely using value.asLocal.
Haste [41] also features a type-based placement specification using monadic computations by
wrapping client and server code into different monads. Koka [73] uses a type and effect sys-
tem to capture which functions can only be executed on the client and which functions can only
be executed on the server, preventing cross-tier access without explicitly sending and receiving
messages.

4.3.2 Placement Granularity. On a different axis, existing MT approaches cover a wide gran-
ularity spectrum regarding the abstractions for which programmers can define placement: files

(e.g., GWT [64]), classes (e.g., Volta [81], J-Orchestra [122]), top-level code blocks (e.g., Stip.js [95]),
top-level bindings (e.g., Links [32]), (potentially nested) blocks (e.g., Meteor [119]), bindings (e.g.,
Opa [102]) and (sub)expressions (e.g., Eliom [101], ML5 [88]). Specification granularities supported
by a language are not mutually exclusive, e.g., ScalaLoci [132] supports placed top-level bindings
and nested remote blocks. In Hop [110] and Ur/Web [28], which target web applications, where
the execution of server code is triggered by an HTTP client request, all top-level bindings define
server-side code and nested client-side code is escaped/quoted at the granularity of expressions.
Eliom [101] supports both nested client expressions and annotated top-level client/server bindings.
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Table 5. Communication Abstractions

Language Communication Abstraction

Remote Message Publish– Reactive Shared
Procedures Passing Subscribe Programming State

Hop/Hop.js �c→s � � · ·
Links �t,c � · · ·
Opa �t � · · ·
StiP.js �t · � · �
Ur/Web �c→s �s→c · · ·
Eliom/Ocsigen � � · � ·
Gavial · · · � ·
AmbientTalk/R · · � � ·
ML5 � · · · ·
ScalaLoci � · · � ·
WebSharper � · · · ·
Haste �c→s · · · ·
Fun · · · · �
Koka · � · · ·
Multi-Tier Calculus �t · · · ·
Swift �t · · · ·
Volta �t · · · ·
J-Orchestra �t · · · ·
Meteor � · � · �
GWT � · · · ·
� Language support, � Support through libraries, c→s From client to server only, s→c From server to

client only, t Fully transparent remote procedure, c Client-initiated.

The approach most akin to traditional languages is to force programmers to define functional-
ities that belong to different hosts in separated compilation units such as different Java packages
(GWT [64]) or different directories (Meteor [119]). An even coarser granularity is distribution at
the software component level. R-OSGi [103] is an OSGi extension where developers specify the
location of remote component loading and Coign [59] extends COM to automatically partition and
distribute binary applications. These solutions, however, significantly depart from the language-
based approach of MT programming.

4.4 Communication Abstractions

MT approaches provide dedicated abstractions intended to simplify implementing remote com-
munication, which differ considerably among languages. Table 5 provides an overview over these
abstractions. Languages either support specific forms of communication only in a single direction—
either from client to server or from server to client—or support bidirectional communication (po-
tentially requiring the client to initiate the communication). MT languages also differ in whether
they make remote communication explicit (and with it, the associated performance impact) or
completely transparent to the developer.

Remote communication mechanisms are either integrated into the language using convenient
syntactic constructs (e.g., from ... get expr in ML5 [88], value.asLocal in ScalaLoci [132]
or rpc fun in Ur/Web [28]), or are made available through the standard library that comes
with the language (e.g., webSocket.send(message) in Hop.js [111] or service.fun(new
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AsyncCallback() {...}) in GWT [64] or Meteor.call("fun", function(error, result)
{...}) in Meteor [119]). We list the communication approaches found in the respective MT lan-
guages in Table 5. Developers can, however, implement such communication mechanisms that are
not supported out-of-the-box (by dedicated language features or as part of the standard library)
as an external library, e.g., providing a library that supports event-based communication based
on remote procedure calls or using a persistent server (e.g., in Links [32]) to emulate shared data
structures. We do not consider such external solutions here. We identify the following remote
communication mechanisms:

Remote procedures are the predominant communication mechanism among MT languages.
Remote procedures can be called in a way similar to local functions—either completely
transparently or using a dedicated remote invocation syntax—providing a layer of ab-
straction over the network between the call site and the invoked code.

Message passing abstractions are closer to the communication model of the underlying net-
work protocols, where messages are sent from one host to another.

Publish–subscribe allows tiers to subscribe to topics of their interest and receive the messages
published by other tiers for those topics.

Reactive programming for remote communication defines data flows across tiers through event
streams or time-changing values that upon each change automatically update the derived
reactive values on the remote tiers.

Shared state makes any updates to a shared data structure performed on one tier available to
other tiers accessing the data structure.

MT languages that target the Web domain follow a traditional request–response scheme, where
web pages are generated for each client request and the client interacts with the server by user
navigation. Both Hop [110] and Eliom [101] allow client and server expressions to be mixed. All
server expressions are evaluated on the server before delivering the web page, and client expres-
sions are evaluated on the client. Hop additionally provides traditional client–server communica-
tion via asynchronous callbacks, whereas Eliom supports more high-level communication mech-
anisms based on reactive programming through libraries.

WebDSL [49], for example, is an external DSL for web applications to specify the data model
and the pages to view and edit data model objects. HTML code is generated for pages, which is
reconstructed upon every client request.

4.4.1 Call-Based Communication. MT languages provide communication abstractions for
client–server interaction not necessarily related to page loading, including RPC-like calls to re-
mote functions, shared state manipulation, or message-passing. Abstracting over calling server-
side services and retaining the result via a local callback, Links [32] allows bidirectional remote
function calls, between client and server. RPC calls in Links, however, hide remote communication
concerns completely which has been criticized because the higher latency is not explicit [63]. In
contrast, Links’ more recent message-passing communication mechanism features explicit send
and receive operations.

In both Ur/Web [28] and Opa [102], server and client can communicate via RPCs or message-
passing channels. Due to the asymmetric nature of client–server web applications, Ur/Web follows
a more traditional approach based on RPCs for client-to-server communication and provides chan-
nels for server-to-client communication.

4.4.2 Event-Based Communication. Publish–subscribe middleware has been used in the context
of loosely coupled mobile devices (AmbientTalk [24, 39]). Hiphop [12], which extends Hop [110]
with synchronous data flows, borrows ideas from synchronous data flow languages, à la Esterel [11].
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The approach provides substantial guarantees on time and memory bounds, at the cost, however, of
significantly restricting expressivity. In ScalaLoci [132], Gavial [104, 105], AmbientTalk/R [39], or
libraries for Eliom [101], tiers expose behaviors (a.k.a. signals) and events in the style of functional
reactive programming to each other.

4.4.3 Distributed Shared State. Meteor [119] provides collections to store JSON-like documents
and automatically propagate changes to the other tier. Similarly, in Fun [135], a language for real-
time web applications, modifications to variables bound to the Global object are automatically
synchronized across clients. MT languages usually support (or even require) a central server
component, enabling shared state via the server as central coordinator that exposes its state to
the clients.

4.5 Formalization of MT Languages

From a formal perspective, MT programming has been investigated in various publications. In this
section, we first present a classification of existing formal models using three analysis directions:
the formalization approach, the proof methods, and the properties considered in the formalization.
Finally, we describe the formalizations of MT languages in more detail, classifying them according
to the points above.

4.5.1 Techniques and Scope. Existing formal models for MT languages that specify an opera-
tional semantics follow three main approaches: (s1) they formalize how a single coherent MT pro-

gram is executed modeling how computation and communication happen in the whole distributed
setting (e.g., with a semantics where terms can be reduced at different locations) [16, 90, 101, 132],
(s2) they specify a splitting transformation that describes how tier-specific programs are extracted
from MT code and they provide an independent reduction model for the split tiers [34, 90, 101], or
(s3) they specify the semantics in terms of an existing calculus [73], i.e., the semantics of a calculus
not specific to MT languages is reinterpreted for MT programming, e.g., different effects in a type
and effect system represent different tiers. Serrano and Queinnec’s [112] continuation-based deno-
tational semantics is an exception to the operational approach. It disregards concurrent execution
of client and server focusing on a sequential fragment of Hop to model dynamic server-side client
code generation.

Based on the models above, researchers looked at properties including (p1) type soundness as
progress and preservation [16, 73, 90, 132], (p2) behavioral equivalence of the execution of the
source MT program (cf. a1) and the interacting concurrent execution of the tier-specific pro-
grams (cf., a2) [34, 90, 101], and (p3) domain-specific properties domain-specific properties that
are significant in a certain context such as secure compilation [10], or performance for data ac-
cess [25], as well as domain-specific properties, such as host reachability in software-defined net-
works [89]. Crucially, the fact that MT languages model client and server together enables rea-
soning about global data flow properties such as privacy. The small-step semantics of Hop [16]
has been used to model the browser’s same-origin policy and define a type system that enforces
it. A similar approach has been proposed to automatically prevent code injection for web applica-
tions [80]. Splitting in Swift [30] is guaranteed to keep server-side private information unreachable
by client-side programs.

Researchers adopted proof methods that belong to two categories: (m1) perform the proofs di-
rectly on the semantics that describes the whole system and/or the splitting transformation [16,
34, 90, 101, 132] or (m2) leverage proved properties of an existing calculus [32, 73].

4.5.2 Formalizations. Table 6 provides a classification of the formalizations of MT languages.
For the discussion, we leave out languages lacking a formal development. Most formalizations
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Table 6. Formalization Approach

Language Proved Properties

Type Soundness Behavioral Equivalence Domain-Specific

of Coherent MT Program based on Existing Calculus of Splitting Transformation Properties

Hop/Hop.js denotational · · operational

(same-origin policy)

Links · · operational ·
Eliom/Ocsigen operational · operational ·
ScalaLoci operational · · ·
Multi-Tier Calculus operational · operational ·
Koka · operational · ·

model MT applications as single coherent programs, providing soundness proofs for the MT lan-
guage. Another common approach for reasoning about the behavior of MT code is to formally
define the splitting transformation that separates MT code into its tier-specific parts to show be-
havioral equivalence of the original MT program and the split programs after the transformation.
In the case of Hop [16] formal reasoning focuses on properties specific to the Web domain, e.g.,
conformance of MT programs to the browser’s same-origin policy. Koka’s effect system [73] can be
used to implement different tiers in the same compilation unit. The sound separation into different
tiers in Koka follows from the soundness of the effect system.

The seminal work by Neubauer and Thiemann [90] presents an MT calculus for web applica-
tions. A static analysis on a simply-typed call-by-value lambda calculus determines which expres-
sions belong to each location and produces the assignment of the code to the locations, which
results in a lambda calculus with annotated locations. A further translation to an MT calculus (s1)
explicitly models opening and closing of communication channels. Type soundness for the MT
calculus is proved (p1). The splitting transformation (s2), which extracts a program slice for each
location, is proved to generate only valid programs wrt the source (p2). The transformed program
is considered valid if it is weakly bisimilar [92] to the source program, i.e, if it performs the same
operations with the same side effects and the operations are in the same order (m1).

Boudol et al. provide a small-step operational semantics for Hop [16], which covers server-side
and client-side computations, concurrent evaluation of requests on the server and DOM manip-
ulation (s1). For Hop, based on Scheme, which does not feature a static type system, the authors
define a type system for “request-safety” (p1), which ensures that client code will never request
server-side services that do not exist. Request-safety is proven sound (m1).

The formalization of the Links programming language [32] is based on RPC calculus [29, 34]
(m2)—an extension of lambda calculus—which models location awareness for stateful clients and
stateless servers. The RPC calculus is transformed (s2) into a client program and a server program
in the client/server calculus. The transformation is proved to be correct and complete (m1). Fur-
ther, a location-aware calculus, which is the the theoretical foundation for the Links programming
language, and a translation to RPC calculus is provided (p2). A simulation that proves that the
behavior of the transformed program in the client/server calculus conforms to the behavior of the
source program in location-aware calculus is left to future work.

Eliom [101] is formalized as an MT extension of core ML. The authors provide an operational
semantics that formalizes the execution for an Eliom program (s1) and provide a translation (s2)
separating an Eliom program into server and client ML programs. Besides subject reduction (p1),
the authors prove the equivalence of the high level MT semantics with the semantics of the com-
piled client and server languages after splitting by simulation (p2). The simulation shows that, for
any given source program, every reduction can be replayed in the transformed programs (m1).
Eliom separates type universes for client and server, allowing the type system to track which
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Table 7. Distribution Topologies

Language Distribution Topology

Client–Server Client–Server + Peer-to-Peer Specifiable
Database

Hop/Hop.js � · · ·
Links · � �1 ·
Opa · � · ·
StiP.js � · · ·
Ur/Web · � · ·
Eliom/Ocsigen � · · ·
Gavial � · · ·
AmbientTalk/R · · � ·
ML5 � · · �
ScalaLoci · · · �
WebSharper � · · ·
Haste � · · ·
Fun � · · ·
Koka � · · �
Multi-Tier Calculus � · · �
Swift � · · ·
Volta � · · ·
J-Orchestra · · · �
Meteor � · · ·
GWT � · · ·
� Supported;� Support conceptually possible, but not supported by the provided examples or the imple-

mentation; 1 Client-to-client communication transparently through central server.

values belong to which side. Eliom, however, leaves out interactive behavior, formalizing only the
creation of a single page.

In ScalaLoci’s formal semantics [132], the reduction relation is labeled with the distributed com-
ponents on which a term is reduced (s1). The authors formulate soundness properties for the en-
coding of placement at the type level, e.g., that terms are reduced on the instances of the peers on
which they are placed (p1). The type system is proven sound (m1).

Using the Koka language, it is possible to define a splitting function for the server and client
parts of a program [73] based on Koka’s ability to separate effectful computations (s3), which
guarantees type soundness for the split programs (p1), e.g., an application can define a client effect
consisting of DOM accesses and a server effect consisting of I/O operations (m2).

4.6 Distribution Topologies

Table 7 gives an overview over the distribution topologies supported by MT languages. The ma-
jority of MT approaches specifically targets client–server applications in the Web domain. Besides
the client and the server tier, Links [32], Opa [102], and Ur/Web [28] also include language-level
support for the database tier. Other MT languages require the use of additional libraries to access
a database (e.g., Hop [110] or Eliom [101]).

Only few approaches target other distribution topologies: AmbientTalk [39] focuses on mobile
ad hoc networks and allows services to be exported and discovered in a peer-to-peer manner, where
peers are loosely coupled. ML5 [88] is an MT language which adopts the idea of possible worlds

from models of modal logic to represent the different tiers in the distributed system. Worlds are
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used to assign resources to different tiers. Although this approach is potentially more general than
the client–server model allowing for the definition of different tiers, the current compiler and run-
time target web applications only. Similarly, in the MT calculus by Neubauer and Thiemann [90],
locations are members of a set of location names that is not restricted to client and server. Their
work, however, focuses on splitting code between a client and as server. Session-typed channels in
Links [32] provide the illusion of client-to-client communication, but messages are routed through
the server. In J-Orchestra [122], developers can define different interconnected network sites in a
configuration file.

ScalaLoci [132] allows developers to specify a distributed system’s topology by declaring types
representing the different components and their relation. Thus, developers can define custom
architectural schemes (i.e., not only client–server) and specify various computing models (e.g.,
pipelines, rings, or master–worker schemes).

5 DISCUSSION AND OUTLOOK

In this section, we discuss open issues in MT programming and suggest future research directions.

5.1 Generic Distributed Systems

A significant limitation of most existing MT research languages (e.g., [28, 32, 95, 101, 102, 105,
110]) is that they do not address generic distributed systems but consider only the client–server
architecture with clients of the same kind, mostly in the limited setting of web applications. Yet,
many distributed systems require more complex architectures and configurations with different
kinds of components—different types of clients, coordinators (e.g., in a master–worker scheme),
backup nodes and logging services. The ScalaLoci MT language [132] contributes to this area with
means to specify an architecture based on peer types, thus, supporting generic distributed systems,
whose architecture can be defined by the developer.

It is likely that the lack of support for generic distributed architectures in most MT languages
has limited the investigation of some aspects that are significant in distributed systems. For exam-
ple, current MT languages consider only one level of consistency [130] (e.g., causal consistency),
the one guaranteed—often implicitly—by the underlying communication system. However, in dis-
tributed applications, developers need to be able to choose among different levels of consistency
and the safety/performance tradeoff they offer. Further, existing MT languages do not provide ded-
icated language abstractions for designing fault-tolerant systems (e.g., actors’ supervision trees).
This state of things is motivated by the context where MT programming has been applied so far,
the Web, where a permanent client failure cannot be recovered anyway.

5.2 Failures

In a distributed setting, including the Web, hosts may fail or disconnect without notice. In particu-
lar, for web applications, clients may close the browser at any point in time. To improve resiliency
to faults, remote communication in MT languages is non-blocking, i.e., the program continues
execution even when the remote communication channel is interrupted. Beyond that, some MT
languages provide primitives that developers can use to detect disconnection, such as dedicated
notification events, callbacks and exceptions.

Calling a service in Hop or GWT, for example, either invokes a success callback or a fail-
ure callback. In Stip.js, failure handling is defined via annotations (i.e., @defineHandler and
@useHandler). Links’ remote communication based on session types supports exception han-
dling to deal with communication failures and disconnections. In ScalaLoci’s event streams, fail-
ures are propagated downstream in a monadic fashion and developers can define failure han-
dlers for upstream operators, similar to supervisors in actor systems. A special event signals the
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disconnection of a remote component. AmbientTalk provides fault-tolerant asynchronous mes-
sage passing between distributed components. Messages sent to a disconnected component are
buffered and delivered after the component reconnects. J-Orchestra allows developers to manu-
ally implement error handling by editing the code after splitting.

5.3 Programming in the Large

Current MT languages do not support dedicated modularization abstractions for programming in
the large, such as module systems [74]. As a result, scalability for MT codebases is an open research
topic, with the risk of severely hindering collaborative development and maintainability. There are
two aspects to consider.

First, there is a technical challenge in the compilation process as the splitting into tier-specific
code needs to be modular. For example, Ur/Web [28] supports a module system in the style of ML.
However, Ur/Web does not feature separate compilation of modules since the language relies on
whole-program analysis for slicing the application into client and server programs.

Second, an interesting research direction is to revisit existing modularization mechanisms to
design them in synergy with MT abstractions, allowing the independent specification of placement
and the combination of (multiple) modules through composition mechanisms (e.g., ML functors).

A notable exception to the lack of MT abstractions for programming in the large is the Eliom
language [101]. In the context of Eliom, Radanne and Vouillon propose a module system [100]
based on ML-style modules featuring functors to abstract over other modules. Eliom modules can
contain client or server declarations (annotated as %client and %server). Mixed modules, defin-
ing both client and server code, span over the client–server boundary enabling software modu-
larization along the modules direction as well as abstraction over the two tiers at the same time.
Another example is the ScalaLoci [132] language for generic distributed systems, which supports
a multitier module system [133] that uses abstract peer types to express the distributed architecture
of the (sub)system encapsulated within each module. Developers use such abstract peer types to
specify the placement of values at the type level and compose modules to combine the different
(sub)system’s architectures.

5.4 Controlled Experiments

Controlled experiments allow researchers to study the effect of languages on aspects such as de-
velopment time, which cannot be easily inferred from analyzing program code. Unfortunately, we
are not aware of empirical studies or controlled experiments that target MT programming. There
are a number of aspects that can be measured, but a first step may entail an assessment of the
effect of MT on program comprehension.

A promising option in this direction would be to consider exploratory studies such as interviews
and the think-aloud approach [70, 71]. Also, MT programming combines functionalities that tradi-
tionally belong to different compilation units into into the same unit, which should be detectable
with eye-tracking techniques, which have been successfully applied to understand how source
code is inspected, debugged and comprehended by developers [20, 61, 65, 77, 125]. A different per-
spective is the effect of the MT paradigm on the cognitive models that developers build regarding
software artifacts, or the the bottom-up model (or situation model) by Letovsky [75].

6 RELATED APPROACHES

In this section, we provide an overview of related research areas that influenced research on MT
programming or share concepts with the MT paradigm.
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PGAS Languages. Partitioned global address space languages (PGAS) [37] provide a high-level
programming model for high-performance parallel execution. For example, X10 [26] parallelizes
task execution based on a work-stealing scheduler, enabling programmers to write highly scal-
able code. Its programming model features explicit fork/join operations to make the cost of com-
munication explicit. X10’s sophisticated dependent-type system [25] captures the place (the heap
partition) a reference points to. Similar to MT languages, PGAS languages aim at reducing the
boundaries between hosts, adopting a shared global address space to simplify development. The
scope of PGAS languages, however, is very diverse—they focus on high performance computing
in a dedicated cluster, while MT programming targets client–server architectures on the Internet.

Operator Placement. In contrast to explicit placement (e.g., via annotations), the operator place-
ment problem consists of finding the best host on which each operator should be deployed in a dis-
tributed system according to maximize a certain metric, such as throughput [35, 69] or load [27].
Methods in this field include the creation of overlay networks where operators are assigned to
hosts via random selection [58], network modeling [98] and linear optimization to find the opti-
mal solution to the constraint problem [23].

Software Architectures. Software architectures [47, 93] organize software systems into compo-
nents and their connections as well as constraints on their interaction. Architecture description
languages (ADL) [82] provide a mechanism for high-level specification and analysis of large soft-
ware systems, for example, to guide architecture evolution. Yet, ADLs are often detached from im-
plementation languages. ArchJava [3] paved the way for consolidating architecture specification
and implementation in a single language. However, ArchJava does not specifically address dis-
tributed systems nor MT programming. Some approaches are at the intersection of MT and mod-
eling languages: Hilda [139] is a web development environment for data-driven applications based
on a high-level declarative language similar to UML which automatically partition MT software.

Choreographies. In choreographic programming, a concurrent system is defined as a single com-
pilation unit called choreography, which is a global description of the interactions and computa-
tions of a distributed system’s connected components [142, 143, 149]. Similar to MT programming,
the compiler automatically produces a correct implementation for each component, e.g., as a pro-
cess or as a microservice [147]. While MT languages abstract over communication, choreographic
programming is communication-centric and the expected communication flow among components
is defined explicitly. The compiler is responsible for generating code that strictly abides by this
flow. Choreographic programming’s formal foundations are rooted in process calculi [150]. It has
been used to investigate new techniques on information flow control [146], deadlock-free dis-
tributed algorithms [145] and protocols for dynamic run time code updates for components [144].
Role parameters in the choreographic language Choral [148] recall ScalaLoci’s abstract peer types
[133]: They can be freely instantiated with different arguments, further allowing for components
to dynamically switch the roles in the distributed system at run time.

Actor Model. The Actor model, initially described by Hewitt et al. [56] and available in pop-
ular implementations such as Erlang OTP [7] and Akka [2], encapsulates control and state into
computation units that run concurrently and exchange messages asynchronously [1]. The decou-
pling offered by asynchronous communication and by the no-shared-memory approach enables
implementing scalable and fault-tolerant systems. De Koster et al. [36] classify actor systems into
four different variants: (i) the classic actor model allows for changing the current interface of an
actor (i.e., the messages which an actor can process) by switching between different named be-
haviors, which handle different types of messages, (e.g., Rosette [123], Akka [2]), (ii) active objects

define a single entry point with a fixed interface (e.g., SALSA [129], Orleans [21]), (iii) process-based

ACM Computing Surveys, Vol. 53, No. 4, Article 81. Publication date: September 2020.



A Survey of Multitier Programming 81:27

actors are executed once and run until completion, supporting explicit receive operations during
run time (e.g., Erlang [7], Scala Actor Library [53]), and (iv) communicating event-loops combine an
object heap, a message queue and an event loop and support multiple interfaces simultaneously
by defining different objects sharing the same message queue and event loop (e.g., E [86]). Actors,
however, are a relatively low-level mechanism to program distributed systems, leaving program-
mers the manual work of breaking applications between message senders and message handlers.
The survey by de Boer et al. [15] provides an overview of the current state of research on actors
and active object languages.

Big Data Processing Systems. Part of the success of modern Big Data systems is due to a pro-
gramming interface that—similar to MT programming—allows developers to define components
that run on different hosts in the same compilation unit, with the framework adding communica-
tion and scheduling. This class of systems includes batch processing frameworks like Hadoop [38]
and Spark [140], as well as stream processing systems like Flink [4] and Storm [118]. Since queries
may process datasets that span multiple data centers and minimizing the traffic is crucial, ap-
proaches like Silos [68] offer abstractions that group nodes belonging to the same location so that
the scheduler can minimize cross-data-center data transfer. Yet, in Big Data systems, the language
semantics is visibly different, for example, mutable shared variables are transformed in non-shared
separated copies.

Language Integration for Database Queries. Properly integrating query languages into general-
purpose languages is a longstanding research problem [8]. Compiling embedded queries into SQL
was pioneered by the Kleisli system [138]. LINQ [124] is a language extension based on Kleisli’s
query compilation technique to uniformly access different data sources such as collections and re-
lational databases. The Links [32] MT language also relies on this technique for providing access to
the database tier. Recent approaches for embedding database queries, such as JReq [60], Ferry [51],
DBPL [109], Slick [115] or Quill [99], also follow a functional approach without object-relational
mapping.

Multi-Stage Programming. Multi-stage programming splits program compilation into a num-
ber of stages, where the execution of one stage generates the code that is executed in the next
stage. MetaML [120] and MetaOCaml [22] provide a quasi-quotation mechanism that is statically
scoped to separate stages syntactically. Quoted expressions are not evaluated immediately but
they generate code to be executed in the next stage. The Hop [110] MT language uses multi-stage
programming to construct client code at the server side. Instead of using syntactic quotations,
lightweight modular staging [108] employs a staging approach based on types, combining staged
code fragments with strong guarantees on well-formedness and type soundness. Using lightweight
modular staging with the Scala-virtualized modified Scala compiler [87], also enables overloading
Scala language constructs such as loops and control structures.

Heterogeneous Computing. In heterogeneous computing, distributed systems consist of different
kinds of processing devices, supporting different specialized processing features. The OpenCL
standard [66] for implementing systems across heterogeneous platforms is rather low-level,
requiring the programmer to be aware of the specific hardware, e.g., specifically redesigning
serial algorithms into parallel ones. Approaches for improving programming heterogeneous
systems include (i) compiler directives to offload computations to specialized processing units,
independent of specific hardware characteristics [6]; (ii) domain-specific embeddings for general-
purpose languages [17, 72, 131] abstracting over low-level details, such as compute kernel
execution; and (iii) higher level programming models that provide primitives for a predefined set
of operations [136].
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Domain-Specific Languages. Several survey papers are available in the literature that provide
an extensive overview of DSLs [83, 117, 126, 127]. Wile [137] provides a compendium of lessons
learnt on developing domain-specific languages providing empirically derived guidelines for con-
structing and improving DSLs. So called fourth generation programming languages—following
third-generation hardware-independent general-purpose languages—are usually DSLs that pro-
vide higher levels of abstraction for a specific domain, such as data management, analysis, and
manipulation [44, 67].

Programming Languages for Distributed Systems. MT programming belongs to a long tradition of
programming language design for distributed systems with influential distributed languages like
Argus [79], Emerald [14], Distributed Oz [54, 128], Dist-Orc [5], and Jolie [151]. More recently,
there have been contributions to specific aspects in the design of programming languages that con-
cern the support for distributed systems, such as cloud types to ensure eventual consistency [18],
conflict-free replicated data types (CRDT) [114], language support for safe distribution of com-
putations [85] and fault tolerance [84], as well as programming frameworks for mixed IoT/Cloud
development, such as Ericsson’s Calvin [94].

7 CONCLUSION

In this article, we provide an overview of MT languages, a programming approach which com-
bines the functionalities that belong to different tiers into the same compilation unit, delegating
injection of communication code and generation of the deployment units to the compiler. We pro-
vide an overview of the existing solutions, discuss their positioning in the design space, including
placement strategy, placement specification and granularity, degree of MT programming, commu-
nication abstractions, formalization, and supported architectures.

We hope that this article can help researchers to orient themselves in the landscape of MT
programming design as well as encourage future development of MT languages.
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