
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Ur/Web: A Simple Model for Programming the Web

Adam Chlipala
MIT CSAIL

adamc@csail.mit.edu

Abstract
The World Wide Web has evolved gradually from a document de-
livery platform to an architecture for distributed programming. This
largely unplanned evolution is apparent in the set of interconnected
languages and protocols that any Web application must manage.
This paper presents Ur/Web, a domain-specific, statically typed
functional programming language with a much simpler model for
programming modern Web applications. Ur/Web’s model is uni-
fied, where programs in a single programming language are com-
piled to other “Web standards” languages as needed; supports novel
kinds of encapsulation of Web-specific state; and exposes simple
concurrency, where programmers can reason about distributed,
multithreaded applications via a mix of transactions and cooper-
ative preemption. We give a tutorial introduction to the main fea-
tures of Ur/Web and discuss the language implementation and the
production Web applications that use it.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques - Modules and interfaces;
D.3.2 [Programming Languages]: Language Classifications - Con-
current, distributed, and parallel languages; Applicative (func-
tional) languages

Keywords Web programming languages; encapsulation; transac-
tions; remote procedure calls; message passing; relational databases;
functional-reactive programming

1. Introduction
The World Wide Web is a very popular platform today for program-
ming certain kinds of distributed applications with graphical user
interfaces (GUIs). Today’s complex ecosystem of “Web standards”
was not planned monolithically. Rather, it evolved gradually, from
the starting point of the Web as a delivery system for static docu-
ments. The result is not surprising: there are many pain points in
implementing rich functionality on top of the particular languages
that browsers and servers speak. At a minimum, today’s rich ap-
plications must generate HTML, for document structure; CSS, for
document formatting; JavaScript, a scripting language for client-
side interactivity; and HTTP, a protocol for sending all of the above
and more, to and from browsers. Most recent, popular applications
also rely on a language like JSON for serializing complex datatypes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2677004

for network communication, and on a language or API like SQL
for storing persistent, structured data on servers. Code fragments
in these different languages are often embedded within each other
in complex ways, and the popular Web development tools provide
little help in catching inconsistencies.

These complaints are not new, nor are language-based solutions.
The Links project [7, 11] pioneered the “tierless programming”
approach, combining all the pieces of dynamic Web applications
within one statically typed functional language. More recent de-
signs in the mainstream reap some similar benefits, as in Google’s
Web Toolkit1 and Closure2 systems, for adding compilation on top
of Web-standard languages; and Microsoft’s LINQ [27], for type-
safe querying (to SQL databases and more) within general-purpose
languages.

Such established systems provide substantial benefits to Web
programmers, but there is more we could ask for. This paper fo-
cuses on a language design that advances the state of the art by ad-
dressing two key desiderata. First, we bring encapsulation to rich
Web applications, supporting program modules that treat key pieces
of Web applications as private state. Second, we expose a simple
concurrency model to programmers, while supporting the kinds of
nontrivial communication between clients and servers that today’s
applications take advantage of. Most Web programmers seem un-
aware of either property as something that might be worth asking
for, so part of our mission in this paper is to evangelize for them.

We present the Ur/Web programming language, an extension
of the Ur language [8], a statically typed functional language in-
spired by dependent type theory. A prior paper described Ur and
its type system, but did not discuss the Web-specific extensions.
Open-source implementations of Ur/Web have been available since
2006, and several production Web applications use the language,
including at least one profitable commercial site.

Ur/Web reduces the nest of Web standards to a simple program-
ming model, coming close to retaining just the essence of the Web
as an application platform, from the standpoints of security and
performance.

• An application is a program in one language (Ur/Web) that runs
on one server and many clients, with automatic compilation of
parts of programs into the languages appropriate to the different
nodes (e.g., JavaScript). The server is completely under the pro-
grammer’s control, while clients may deviate arbitrarily from
code we provide to them to run. For reasons of performance
scaling or reliability, we may use multiple physical machines
to implement server functionality, but it is sound for the pro-
grammer to imagine all server code running in a single isolated
machine.

• All objects passed between parts of the application are strongly
typed. Applications may be written with no explicit marshaling

1 http://www.gwtproject.org/
2 https://developers.google.com/closure/

153

http://www.gwtproject.org/
https://developers.google.com/closure/

or other conversion of data between formats. Where snippets of
code appear as first-class values, they are presented as abstract
syntax trees, ruling out flaws like code injection vulnerabilities
that rely on surprising consequences of concatenating code-as-
strings.

• The only persistent state in the server sits in an SQL database,
accessed through a strongly typed SQL interface.

• The server exposes a set of typed functions that are callable
remotely. A client begins interacting with the application in a
new browser tab by making a remote procedure call to one of
these functions, with arbitrary correctly typed arguments.
The server runs the associated function atomically, with no
opportunity to observe interference by any other concurrent
operations, generating an HTML page that the client displays.

• The HTML page in a client may contain traditional links to
other pages, which are represented as suspended calls to other
remotely callable functions, to be forced when a link is fol-
lowed, to generate the new HTML page to display.

• Any HTML page may also contain embedded Ur/Web code
that runs in the client. Such code may spawn as many client-
side threads as is convenient, and the threads obey a coopera-
tive multithreading semantics, where one thread runs at a time,
and we only switch threads during well-defined blocking oper-
ations. Threads may modify the GUI shown to the user, via a
functional-reactive programming system that mixes dataflow
programming with imperative callbacks.

• Client-side thread code may also make blocking remote pro-
cedure calls treated similarly to those for regular links. Such
a call may return a value of any function-free type, not just
HTML pages; and the thread receiving the function result may
compute with it to change the visible GUI programmatically,
rather than by loading a completely new page. As before, ev-
ery remote procedure call appears to execute atomically on the
server.

• Server code may allocate typed message-passing channels,
which may be both stored in the database and returned to clients
via remote function calls. The server may send values to a chan-
nel, and a client that has been passed the channel may receive
those values asynchronously. Channel sends are included in the
guarantee of atomicity for remote calls on the server; all sends
within a single call execution appear to transfer their messages
to the associated channels atomically.

The next section expands on these points with a tutorial intro-
duction to Ur/Web. We highlight the impact on the language design
of our goals to support encapsulation and simple concurrency.
Next, we describe key implementation techniques in the Ur/Web
compiler and runtime system, and we evaluate the effectiveness of
the language, partly through surveying deployed applications that
use it.

The open-source implementation of Ur/Web is available at:

http://www.impredicative.com/ur/

2. A Tutorial Introduction to Ur/Web
We will introduce the key features of Ur/Web through a series of
refinements of one example, a multiuser chat application. Visitors
to the site choose from a selection of chat rooms, each of which
maintains a log of messages. Any visitor to a chat room may
append any line of text to the log, and there should be some
way for other users to stay up-to-date on log additions. We start
with a simple implementation, in the style of 20th-century Web
applications, before it became common to do significant client-

table room : { Id : int, Title : string }

table message : { Room : int, When : time,

 Text : string }

fun chat id =

 let

 fun say r =

 dml (INSERT INTO message (Room, When, Text)
 VALUES ({[id]}, CURRENT_TIMESTAMP, {[r.Text]}));
 chat id

 in

 title <− oneRowE1 (SELECT (room.Title) FROM room
 WHERE room.Id = {[id]});
 log <− queryX1 (SELECT message.Text FROM message
 WHERE message.Room = {[id]}
 ORDER BY message.When)
 (fn r => <xml>{[r.Text]}
</xml>);
 return <xml><body>
 <h1>Chat Room: {[title]}</h1>

 <form>
 Add message: <textbox{#Text}/>
 <submit value="Add" action={say}/>
 </form>

 <hr/>

 {log}

 </body></xml>
 end

fun main () =

 rooms <− queryX1 (SELECT * FROM room
 ORDER BY room.Title)
 (fn r => <xml>
 {[r.Title]}</xml>);
 return <xml><body>
 <h1>List of Rooms</h1>

 {rooms}

 </body></xml>

Figure 1. A simple chat-room application

side scripting. We evolve toward a version with instant updating
upon all message additions, where a chat room runs within a single
HTML page updated incrementally by client-side code. Along the
way, we highlight our running themes of encapsulation and simple
concurrency.

2.1 HTML and SQL
Mainstream modern Web applications manipulate code in many
different languages and protocols. Ur/Web hides most of them
within a unified programming model, but we decided to expose
two languages explicitly: HTML, for describing the structure of
Web pages as trees, and SQL, for accessing a persistent relational
database on the server. In contrast to mainstream practice, Ur/Web
represents code fragments in these languages as first-class, strongly
typed values. We use the type system of Ur [8] to define rich syntax
tree types, where the generic type system is sufficient to enforce the
typing rules of the embedded languages, HTML and SQL. Going
into the details of type encoding would take us off-track in this
paper, so the reader may pretend that Ur/Web includes special built-
in support for type-checking HTML and SQL.

Figure 1 gives our first chat-room implementation, relying on
embedding of HTML and SQL code. While in general Ur/Web
programs contain code that runs on both server and clients, all code
from this figure runs on the server, where we are able to enforce
that it is run exactly as written in the source code.

The first two lines show declarations of SQL tables, which
can be thought of as mutable global variables of type “multiset
of records.” Table room’s records contain integer IDs and string
titles, while table message’s records contain integer room IDs,

154

http://www.impredicative.com/ur/

timestamps, and string messages. The former table represents the
set of available chat rooms, while the latter represents the set of all
(timestamped) messages sent to all rooms.

It is unusual for a programming language to treat SQL tables as
declared within the language. The more common view is that the
SQL database exists as a resource “out there somewhere,” and the
programming language merely connects to it. Our strange choice
has important consequences for encapsulation, which we will get
to shortly.

We direct the reader’s attention now to the declaration of func-
tion main, near the end of Figure 1. Here we see Ur/Web’s syntax
extensions for embedded SQL and HTML code. Such notation is
desugared into calls to constructors of abstract syntax tree types,
at which point the normal Ur type-checker may validate the type-
correctness of embedded fragments. The main definition demon-
strates two notations for “antiquoting,” or inserting Ur code within
a quoted code fragment. The notation {e} asks to evaluate expres-
sion e to produce a subfragment to be inserted at that point, and no-
tation {[e]} adds a further stage of formatting e as a literal of the
embedded language (using type classes [37] as in Haskell’s show).
Note that we are not exposing syntax trees to the programmer as
strings, so neither antiquoting form presents any danger of code in-
jection attacks, where we accidentally interpret user input as code.

What exactly does the main definition do? First, we run an SQL
query to list all chat rooms. In our tutorial examples, we will call a
variety of functions from Ur/Web’s standard library, especially var-
ious higher-order functions for using SQL query results. We adopt
a typographic convention for documenting each library function
briefly, starting with queryX1, used in main:

queryX1 Run an SQL query that returns columns from a single ta-
ble (leading to the 1 in the identifier), calling an argument func-
tion on every result row. Since just a single table is involved, the
input to the argument function can be a record with one field per
column returned by the query. The argument function should re-
turn XML fragments (leading to the X in the identifier), and all
such fragments are concatenated together, in order, to form the
result of queryX1.

Note that a remotely callable function like main lives in a dis-
tinguished monad for input-output [29] as in Haskell, since Ur is
purely functional. Thus, we use the <- notation to run an effect-
ful computation and bind its result to a variable, and we call the
return function to lift pure values into trivial computations.

The remaining interesting aspect of main is in its use of an
HTML <a> tag to generate a hyperlink. Instead of denoting a link
via a URL as in standard HTML, we use a link attribute that
accepts a suspended Ur/Web remote function call. In this case, we
call chat, which is defined earlier. The Ur/Web implementation
handles proper marshaling of arguments in suspended calls.

Now let us examine the implementation of function chat, pro-
viding a page for viewing the current message log of a chat room.
First, there is a nested definition of a function say, which will be
called to append a message to the log.

dml Run a piece of SQL code for its side effect of mutating the
database. The function name refers to SQL’s data manipulation
language.

This particular invocation of dml inserts a new row into the
message table with the current timestamp, after which we dis-
play the same page as chat itself would generate. Note that say,
like all remotely callable functions, appears to execute atomically,
so the programmer need not worry about interleavings between
concurrent operations by different clients. To tune performance,
programmers might want to indicate the boundaries of atomic ex-
ecution units explicitly, but we have found that it works well to

make the atomic units be precisely the remote calls, which saves
programmers from needing to write any explicit code to begin or
end transactions.

The main body of chat runs appropriate queries to retrieve the
room name and the full, sorted message log.

oneRowE1 Run an SQL query that should return just one result
row containing just a single column (justifying the 1) that is
computed using an arbitrary SQL expression (justifying the E).
That one result value becomes the result of the oneRowE1 call.

We antiquote the query results into the returned page in an un-
surprising way. The only new feature involves HTML forms. In
general, we tag each input widget with a record field name, and
then the submit button of the form includes, in its action attribute,
an Ur/Web function that should be called upon submission, on a
record built by combining the values of all the input widgets. We
will not say any more about HTML forms, which to some extent
represent a legacy aspect of HTML that has been superseded by
client-side scripting. Forms are a non-Turing-complete language
for input solicitation, and these days it is more common to use a
Turing-complete language (JavaScript) for the same task.

Note that this first example already displays a small bit of en-
capsulation: the local function say may only be referenced within
the declaration of chat. Clients may ignore the intended order of
link-following and visit say directly, but we at least know our ap-
plication itself will not accidentally generate links to say outside
the intended scope.

Compiling an application to run on the real Web platform re-
quires exposes remotely callable functions (like main, chat, and
say) via URLs. Ur/Web automatically generates pleasing URL
schemes by serializing the function-call expressions that appear in
places like link attributes. For instance, the link to chat in the
declaration of main is compiled to a URL /chat/NN, where NN
is a textual representation of the room ID. The link to say within
the submit button above is compiled like /say/NN, including the
value of a local variable id implicitly captured in the function.

The Ur/Web compiler handles generation of URL schemes in
such a way that it is guaranteed that no two functions will wind
up with conflicting schemes. This approach contrasts sharply with
the manual URL routing found in most mainstream frameworks.
There are serious costs to modularity when composing two libraries
requires understanding their URL schemes.

Some other systems, like the PLT Scheme Web Server [20] and
Links [11], avoid the problem by generating non-human-readable
URLs, standing for continuation references. We prefer to keep
URLs readable, since they serve as a common interface with the
broader Internet world. However, Links pioneered many of the
other design elements on display in Figure 1, including type-safe
combination of HTML and database code within a single language.
One further key difference is that Ur/Web works with direct embed-
ding of SQL code, whereas Links compiles to SQL from a subset
of itself, presented as a monadic query language [7].

The key distinguishing elements of Ur/Web’s design, in com-
parison to past languages, become clearer when we turn to taking
better advantage of encapsulation. Before doing so, we pause to
discuss some relative strengths and weaknesses of the HTML and
SQL encodings in Ur/Web.

Ur/Web effectively encodes XML with algebraic datatypes,
which are not expressive enough to capture all of the constraints
associated with XML schemas. Regular expression types [19] are
an established approach to enforcing the rules of XML more liter-
ally, and they have been integrated with ML-style languages in the
OCamlDuce project [16]. Programmers may benefit from that style
of more precise type-checking. On the other hand, more complex
static checking of XML may be more difficult for programmers

155

structure Room : sig
 type id
 val rooms : transaction (list {Id : id,

 Title : string})

 val chat : id −> transaction page

end = struct

 (* ...copies of old definitions of room, message,

 and chat... *)

 val rooms = queryL1 (SELECT * FROM room
 ORDER BY room.Title)
end

fun main () =

 rooms <− Room.rooms;

 return <xml><body>
 <h1>List of Rooms</h1>

 {List.mapX (fn r =>

 <xml>
 {[r.Title]}</xml>) rooms}
 </body></xml>

Figure 2. A modular factorization of the first application

to understand. An additional benefit of Ur/Web’s approach is that
XML checking need not be built into the language (as it is in, e.g.,
OCamlDuce) but is instead encoded as a library using Ur’s rich
but general-purpose type system [8]. We use row types to encode
context constraints on XML elements, so that the generic Ur type-
inference engine may do the rest of the work.

A similar comparison may be drawn with other approaches
to encoding relational database queries. The language-integrated
query approach represents queries within a restricted subset of the
host programming language, rather than working with explicit em-
bedded syntax of a language like SQL. Microsoft’s LINQ [27] is
the well-known example that gives the approach its name, but the
contemporaneous Links language [7, 11] uses static type check-
ing and term rewriting to provide more principled guarantees about
which expressions will compile to SQL successfully. Ur/Web en-
codes SQL as a library, with no special type-inference support re-
quired in the compiler, and the programmer benefits from the ex-
plicit control over exactly which code will be passed to the database
system. Performance fine-tuning may be most effective with this
sort of direct approach. On the other hand, explicit manipulation
of query syntax can be more tedious than writing query code di-
rectly in the host language, relying on compilation to the language
of a database system; and the use of multiple languages encourages
some amount of duplicate definition of library functions. Overall,
on this comparison point the author is agnostic and could imagine
a successor to Ur/Web being developed with language-integrated
query.

2.1.1 Adding More Encapsulation
The application in Figure 1 is rather monolithic. The database state
is exposed without restrictions to all parts of the application. We
would not tolerate such a lack of encapsulation in a large traditional
application. Chunks of functionality should be modularized, e.g.
into classes implementing data structures. The database tables here
are effectively data structures, so why not try to encapsulate them
as well?

The answer is that, as far as we are aware, no prior language
designs allow it! As we wrote above, the general model is that
the SQL database is a preexisting resource, and any part of the
application may create an interface to any part of the database. We
analogize such a scheme to an object-oriented language where all
class fields are public; it forecloses on some very useful styles of
modular reasoning. It is important that modules be able to create
their own private database tables, without requiring any changes

to other source code, application configuration files, etc., for the
same reason that we do not want client code of a dictionary class to
change, when the dictionary switches to being implemented with
hash tables instead of search trees.

Figure 2 shows a refactoring of our application code, to present
the chat-room table as a mutable abstract data type. We use
Ur/Web’s module system, which is in the ML tradition [23]. We
have modules that implement signatures, which may impose infor-
mation hiding by not exposing some members or by making some
types abstract. Figure 2 defines a module Room encapsulating all
database access.

The signature of Room appears bracketed between keywords
sig and end. We expose an abstract type id of chat-room iden-
tifiers. Ur/Web code in other program modules will not be able to
take advantage of the fact that id is really int, and thus cannot fab-
ricate new IDs out of thin air. The signature exposes two methods:
rooms, to list the IDs and titles of all chat rooms; and chat, exactly
the remotely callable function we wrote before, but typed in terms
of the abstract type id. Each method’s type uses the transaction
monad, which is like Haskell’s IO monad, but with support for ex-
ecuting all side effects atomically in a remote call.

The implementation of Room is mostly just a copying-and-
pasting of the bulk of the code from Figure 1. We only need to
add a simple implementation of the rooms method.

queryL1 Return as a list (justifying the L) the results of a query
that only returns columns of one table (justifying the 1).

List.mapX Apply an XML-producing function to each element of
a list, then concatenate together the resulting XML fragments
to compute the result of mapX.

The code for main changes to call methods of Room, instead of
inlining database access.

This sort of separation of a data model is often implemented
as part of the “model-view-controller” pattern. To our knowledge,
that pattern had not previously been combined with guaranteed
encapsulation of the associated database tables. It also seems to
be novel to apply ML-style type abstraction to database results, as
in our use of an id type here. We hope this example has helped
convey one basic take-away message: giving first-class status to
key pieces of Web applications makes it easy to apply standard
language-based encapsulation mechanisms.

Strong encapsulation is not automatic when using conventional
database engines. The database server will generally be configured
to allow ad-hoc querying by humans and other applications, where
the data abstraction in a particular Ur/Web application need not
be respected. We imagine a future version of Ur/Web with tighter
data storage integration, where by default only an application itself
may access particular tables. For now, though, data abstraction
for SQL tables remains useful as a way to reason about Ur/Web
programs, and it is possible to associate each application with a
new database user whose authentication credentials are only given
to the application daemon. The Ur/Web compiler will automatically
initialize the schema of a database, and each application checks on
start-up that the schema matches what is present in its source code.

2.2 Client-Side GUI Scripting
We will develop two more variations of the chat-room application.
Our modifications will be confined to the implementation of the
Room module. Its signature is already sufficient to enable our ex-
periments, and we will keep the same main function code for the
rest of the tutorial.

Our first extension takes advantage of client-side scripting to
make applications more responsive, without the need to load a com-
pletely fresh page after every user action. Mainstream Web appli-
cations are scripted with JavaScript, but, as in Links and similar

156

structure Log : sig
 type t
 val create : transaction t

 val append : t −> string −> transaction {}

 val render : t −> xbody

end = struct

 datatype log =
 Nil

 | Cons of string * source log

 type t = {Head : source log,
 Tail : source (source log)}

 val create =

 s <− source Nil;

 s’ <− source s;

 return {Head = s, Tail = s’}

 fun append t text =

 s <− source Nil;

 oldTail <− get t.Tail;

 set oldTail (Cons (text, s));

 set t.Tail s;

 log <− get t.Head;

 case log of

 Nil => set t.Head (Cons (text, s))

 | _ => return ()

 fun render’ log =

 case log of

 Nil => <xml/>
 | Cons (text, rest) => <xml>
 {[text]}

 <dyn signal={log <− signal rest;
 return (render’ log)}/>
 </xml>

 fun render t = <xml>
 <dyn signal={log <− signal t.Head;
 return (render’ log)}/>
 </xml>
end

Figure 3. A module implementing a GUI for an append-only log

languages, Ur/Web scripting is done in the language itself, which
is compiled to JavaScript as needed.

2.2.1 Reactive GUIs
Ur/Web GUI programming follows the functional-reactive style.
That is, to a large extent, the visible page is described via dataflow,
as a pure function over some primitive streams of values. As the
primitive streams evolve, the language runtime system automati-
cally rerenders just those parts of the page that are affected. Lan-
guages like Flapjax [28] and Elm [14] adopt the stream metaphor
literally, where the primitive streams represent, e.g., mouse clicks
made by the user. Ur/Web adopts a less pure style, where we retain
the event callbacks of imperative programming. These callbacks
modify data sources, which are a special kind of mutable reference
cells. The only primitive streams are effectively the sequences of
values that data sources take on, where new entries are pushed into
the streams mostly via imperative code in callbacks.

As a basic orientation to these concepts in Ur/Web, here is their
type signature. We write :: to ascribe a kind to a type-level identifier,
where, for instance, Type → Type indicates a type family param-
eterized over one type argument. We write : to ascribe a type to a
value-level identifier. As types and values occupy different names-
paces, we often reuse an identifier (e.g., source) to stand for both a
type and the run-time operation for allocating one of its instances.

source :: Type → Type

source : ∀α. transaction (source α)

get : ∀α. source α→ transaction α

set : ∀α. source α→ α→ transaction {}

signal :: Type → Type

s m : monad signal

signal : ∀α. source α→ signal α

That is, data sources are a polymorphic type family, with op-
erations for allocating them and reading or writing their values.
All such operations live inside the transaction monad, which
contains imperative side effects in the manner of Haskell’s IO
monad [29]. Signals, or time-varying values, are another polymor-
phic type family, which happens to form a monad with appropri-
ate operations, as indicated by the presence of a first-class dictio-
nary s m witnessing their monadhood. One more key operation
with signals is producing them from sources, via the value-level
signal function, which turns a source into a stream that documents
changes to the source’s contents.

Figure 3 demonstrates these constructs in use, in a module
implementing a GUI widget for append-only logs. The module
signature declares an abstract type t of logs. We have methods
create, to allocate a new log; append, to add a new string to
the end of a log; and render, to produce the HTML representing
a log. The type of render may be deceiving in its simplicity;
Ur/Web HTML values (as in the xbody type of HTML that fits
in a document body) actually are all implicitly parameterized in the
dataflow style, and they are equipped to rerender themselves after
changes to the data sources they depend on.

The workhorse data structure of logs is an algebraic datatype
log, which looks almost like a standard definition of lists of strings.
The difference is that the tail of a nonempty log has type source
log, rather than just log. We effectively have a type of lists that
supports imperative replacement of list tails, but not replacement
of heads.

The type t of logs is a record of two fields. Field Head is a mod-
ifiable reference to the current log state, and Tail is a “pointer to
a pointer,” telling us which source cell we should overwrite next to
append to the list. Methods create and append involve a bit of
intricacy to update these fields properly, but we will not dwell on
the details. We only mention that the point of this complexity is to
avoid rerendering the whole log each time an entry is appended; in-
stead, only a constant amount of work is done per append, to mod-
ify the document tree at the end of the log. That sort of pattern is
difficult to implement with pure functional-reactive programming.

The most interesting method definition is for render. Our
prior examples only showed building HTML fragments that are
vacuously dataflow-parameterized. We create dependencies via an
HTML pseudotag called <dyn>. The signal attribute of this tag
accepts a signal, a time-varying value telling us what content should
be displayed at this point on the page at different times. Crucially,
the signal monad rules out imperative side effects, instead cap-
turing pure dataflow programming. Since it is a monad, we have
access to the usual monad operations <- and return, in addition
to the signal function for lifting sources into signals.

Let us first examine the definition of render’, a recursive
helper function for render. The type of render’ is log ->
xbody, displaying a log as HTML. Empty logs are displayed as
empty HTML fragments, and nonempty logs are rendered with
their textual heads followed by recursive renderings of their tails.
However, the recursive call to render’ is not direct. Instead it

157

appears inside a <dyn> pseudotag. We indicate that this subpage
depends on the current value of the tail (a data source), giving the
computation to translate from the tail’s value to HTML. Now it
is easy to define render, mostly just duplicating the last part of
render’.

An important property of this module definition is that a
rendered log automatically updates in the browser after every call
to append, even though we have not coded any explicit coupling
between these methods. The Ur/Web runtime system takes care of
the details, once we express GUIs via parameterized dataflow.

Client code may use logs without knowing implementation de-
tails. The standard Web model involves imperative mutation of the
document tree, which is treated as a public global variable. Mis-
takes in one code module may wreck subtrees that other mod-
ules believe they control. For instance, subtrees are often looked
up by string ID, creating the possibility for two different libraries
to choose the same ID unwittingly for different subtrees. With the
Ur/Web model, the author of module Log may think of it as owning
particular subtrees of the HTML document as private state. Stan-
dard module encapsulation protects the underlying data sources
from direct modification by other modules, and rendered logs only
have dataflow dependencies on the values of those sources.

Classic pure functional-reactive frameworks provide similar ad-
vantages, but it can be challenging to fit a full application into the
model of pure stream transformers. In our experience, many pro-
grammers find the callback style easier to wrap their heads around.
Consider the example of the Log module. We could express the log
creation or rendering method as a function over a stream of requests
to append entries. However, building these streams in practice may
be nontrivial, forcing explicit demultiplexing of the variety of user
actions and network responses that may produce log entries. (We
see an example of multiple log-entry sources in the next subsec-
tion.) The usual modularity advantages of mutable state fit well
in this GUI domain, and they are compatible with maintaining the
dataflow part of functional-reactivity. Flapjax [28] supports the im-
perative model, via a method for pushing events into any stream
(even those that we might wish client code saw as read-only), but
this method is suggested for use only in interfacing with legacy,
callback-based code.

2.2.2 Remote Procedure Calls
The GUI widget for displaying the chat log is only one half of the
story, if we are to write an application that runs within a single page.
We also need a way for this application to contact the server, to trig-
ger state modifications and receive updated information. Ur/Web’s
first solution to that problem is remote procedure calls (RPCs), al-
lowing client code to run particular function calls as if they were
executing on the server, with access to shared database state. Client
code only needs to wrap such calls to remotely callable functions
within the rpc keyword, and the Ur/Web implementation takes care
of all network communication and marshaling. Every RPC appears
to execute atomically, just as for other kinds of remote calls.

Figure 4 reimplements the Room module to take advantage of
RPCs and the Log widget.

List.foldl As in ML, step through a list, applying a function f
to each element, so that, given an initial accumulator a and a
list [x1, . . . , xn], the result is f(xn, . . . f(x1, a) . . .).

List.app Apply an effectful function to every element of a list, in
order.

The code actually contains few new complexities. Our basic strat-
egy is for each client to maintain the timestamp of the most recent
chat message it has received. The textbox for user input is associ-
ated with a freshly allocated source string, via the <ctextbox>
pseudotag (“c” is for “client-side scripting”). Whenever the user

structure Room : sig
 type id
 val rooms : transaction (list {Id : id,

 Title : string})

 val chat : id −> transaction page

end = struct

 table room : { Id : int, Title : string }

 table message : { Room : int, When : time,

 Text : string }

 val rooms = queryL1 (SELECT * FROM room
 ORDER BY room.Title)

 (* New code w.r.t. Figure 2 starts here. *)

 fun chat id =

 let

 fun say text lastSeen =

 dml (INSERT INTO message (Room, When, Text)
 VALUES ({[id]}, CURRENT_TIMESTAMP, {[text]}));
 queryL1 (SELECT message.Text, message.When
 FROM message
 WHERE message.Room = {[id]}
 AND message.When > {[lastSeen]}
 ORDER BY message.When DESC)

 val maxTimestamp =

 List.foldl (fn r acc => max r.When acc) minTime

 in

 title <− oneRowE1 (SELECT (room.Title) FROM room
 WHERE room.Id = {[id]});
 initial <− queryL1 (SELECT message.Text,
 message.When

 FROM message
 WHERE message.Room = {[id]}
 ORDER BY message.When DESC);
 text <− source "";

 log <− Log.create;

 lastSeen <− source (maxTimestamp initial);

 return <xml><body onload={
 List.app (fn r => Log.append log r.Text) initial}>
 <h1>Chat Room: {[title]}</h1>

 Add message: <ctextbox source={text}/>
 <button value="Add" onclick={fn _ =>
 txt <− get text;

 set text "";

 lastSn <− get lastSeen;

 newMsgs <− rpc (say txt lastSn);

 set lastSeen (maxTimestamp newMsgs);

 List.app (fn r => Log.append log r.Text)

 newMsgs}/>
 <hr/>
 {Log.render log}

 </body></xml>
 end

end

Figure 4. A client-code-heavy chat-room application

modifies the text shown in this box, the associated source is auto-
matically mutated to contain the latest text. When the user clicks a
button to send a message, we run the callback code in the button’s
onclick attribute, on the client, whereas the code for this exam-
ple outside of on* attributes runs on the server. This code makes
an RPC, telling the server both the new message text and the last
timestamp that the client knows about. The server sends back a list
of all chat messages newer than that timestamp, and client code iter-
ates over that list, adding each message to the log; and then updates
the last-seen timestamp accordingly, taking advantage of the fact
that the RPC result list will never be empty, as it always contains at
least the message that this client just sent. An onload event handler
in the body tag initialized the log in the first place, appending each
entry returned by an initial database query.

Note how seamless is the use of the Log module. We allocate a
new log, drop its rendering into the right part of the page, and peri-

158

fun main () =

 tag <− source "";

 image <− source <xml/>;

 return <xml><body>
 Tag: <ctextbox source={tag}
 onchange={tag <− get tag;

 found <− rpc (tagExists tag);

 if found then

 set image <xml>
 </xml>
 else return ()}/>

 <dyn signal={signal image}/>

Figure 5. Partial Ur/Web code for image-lookup example

odically append to it. Pure functional-reactive programming would
require some acrobatics to interleave the event streams generated
as input to the log system, from the two syntactically distinct calls
to Log.append. Another challenge is fitting effectful RPCs into a
pure functional-reactive framework. Elm [14] supports injection of
RPCs in pure stream-transformation code, with a novel mechanism
to allow local computation to continue while waiting for RPC re-
sponses. It is not clear how to extend such a technique for impure
RPCs, which are useful for precisely the kind of call we use in Fig-
ure 4, to modify a shared database. For pure RPCs, we can realize
similar semantics to Elm’s merely by spawning RPCs in their own
threads, which write to sources after RPCs complete.

For instance, consider the third example from a paper about
Elm [14], where users type text into a textbox, and an image on
the same page updates according to the result of an image-search
query to a remote server, using the latest text. Here is an excerpt of
the Elm code.

(inputField, tags) = Input.text "Enter a tag"

getImage tags =
lift (fittedImage 300 200)

(syncGet (lift requestTag tags))

... async (getImage tags) ...

Built-in function syncGet makes an HTTP request, and built-in
function async causes evaluation to run in a separate thread. The
essential dataflow action in this example is from tags, a stream
recording successive contents of a freshly created textbox, into the
details of the HTTP request to be made via syncGet.

We can actually duplicate the same functionality in Ur/Web, in
an equally pure way, by taking advantage of the fact that the HTML
 tag already has built into it the idea of contacting a remote
server to retrieve an image by URL. A dynamically varying piece of
HTML may simply contain different tags at different times,
and the browser handles retrieving images as usual. However, for
a fairer comparison, we should consider an interaction that does
require some custom logic. Figure 5 shows Ur/Web code for a
variant approach, where, whenever the contents of the tag textbox
change, we first ask the server by RPC if any image exists matching
that tag. If none exists, we make no changes to which image is
displayed. If a match is found, we change to the new image, using
the built-in function url, which coerces a remote function call into
an abstract type of URLs. In this case, the URL is for a server-side
function that computes an image based on input text. All of the
reactive computation happens inside an onchange handler for the
textbox, called whenever the text changes.

The code in Figure 5 blocks the whole client-side application
while an RPC runs, but that problem is easily solved by putting
the whole onchange attribute code snippet into a new thread, with
the spawn keyword that we say more about in the next subsec-

structure Room : sig
 type id
 val rooms : transaction (list {Id : id,

 Title : string})

 val chat : id −> transaction page

end = struct

 table room : { Id : int, Title : string }

 table message : { Room : int, When : time,

 Text : string }

 val rooms = queryL1 (SELECT * FROM room
 ORDER BY room.Title)

 (* New code w.r.t. Figure 2 starts here. *)

 table subscriber : { Room : int,

 Chan : channel string }

 fun chat id =

 let

 fun say text =

 dml (INSERT INTO message (Room, When, Text)
 VALUES ({[id]}, CURRENT_TIMESTAMP, {[text]}));
 queryI1 (SELECT subscriber.Chan FROM subscriber
 WHERE subscriber.Room = {[id]})
 (fn r => send r.Chan text)

 in

 chan <− channel;

 dml (INSERT INTO subscriber (Room, Chan)
 VALUES ({[id]}, {[chan]}));

 title <− oneRowE1 (SELECT (room.Title) FROM room
 WHERE room.Id = {[id]});
 initial <− queryL1 (SELECT message.Text,
 message.When

 FROM message
 WHERE message.Room = {[id]}
 ORDER BY message.When DESC);

 text <− source "";

 log <− Log.create;

 return <xml><body onload={
 let

 fun listener () =

 text <− recv chan;

 Log.append log text;

 listener ()

 in

 spawn (listener ());

 List.app (fn r => Log.append log r.Text) initial

 end}>
 <h1>Chat Room: {[title]}</h1>

 Add message: <ctextbox source={text}/>
 <button value="Add" onclick={fn _ =>
 txt <− get text;

 set text "";

 rpc (say txt)}/>

 <hr/>

 {Log.render log}

 </body></xml>
 end

end

Figure 6. Final chat-room application

tion. Overall, the Ur/Web version of this functionality is moder-
ately more complicated than the Elm version, but all of the impera-
tive side effects can be encapsulated within a module in the style of
Log from Figure 3, creating an observationally pure image-search
widget. Some functionality, like that of the Log module itself, is
inherently easier to orchestrate modularly with mutable state, al-
lowing widely separated parts of a program, with their own private
state, to create data flows into a shared component, with no explicit
fan-in merging their different streams.

159

2.3 Message-Passing from Server to Client
Web browsers make it natural for clients to contact servers via
HTTP requests, but the other communication direction may also be
useful. One example is our chat application, where only the server
knows when a client has posted a new message, and we would like
the server to notify all other clients in the same chat room. Clients
can poll the server with periodic HTTP requests, guaranteeing that
the lag to learn of a new message will not exceed the polling period.
Real-world applications often use a technique called long polling,
where a client opens a connection and is willing to wait an arbitrary
period of time for the server’s response. The server can hold all
of these long-poll connections open until there is a new event to
distribute. The mechanics are standardized in recent browsers with
the WebSockets protocol, providing an abstraction of bidirectional
streams between clients and servers. Ur/Web presents an alternative
abstraction (implemented with long polling) where servers are able
to send typed messages directly to clients.

The messaging abstraction is influenced by concurrent program-
ming languages like Erlang [1] and Concurrent ML [31]. Commu-
nication happens over unidirectional channels. Every channel has
an associated client and a type. The server may send any value
of that type to the channel, which conceptually adds the message
to a queue on the client. Clients asynchronously receive messages
from channels for which they have handles, conceptually dequeu-
ing from local queues, blocking when queues are empty. Any re-
mote call may trigger any number of sends to any number of chan-
nels. All sends in a single remote call appear to take place atom-
ically. Atomicity will be important in our chat-room example, to
preserve a consistent global view of message order, when many
simultaneous RPCs may be notifying the same set of clients with
different messages.

The API for channels is straightforward:

channel :: Type → Type

channel : ∀α. transaction (channel α)

recv : ∀α. channel α→ transaction α

send : ∀α. channel α→ α→ transaction {}

One wrinkle is that channel and send may only be called in server-
side code, while recv may only be called in client-side code. A
compiler analysis makes sure that functions are not called in the
wrong places, and we have considered changing the types of the
basic operations in a future Ur/Web version, so that standard type
inference verifies sidedness properties.

Figure 6 gives another reimplementation of Room, this time
using channels to keep clients synchronized at all times, modulo
small amounts of lag. We retain the same room and message tables
as before, but we also add a new table subscriber, tracking which
clients are listening for notifications about which rooms. (Thanks
to Ur/Web’s approach to encapsulation of database tables, we need
not change any other source or configuration files just because we
add a new private table.) Every row of subscriber has a room ID
Room and a channel Chan that is able to receive strings.

Now the chat method begins by allocating a fresh channel
with the channel operation, which we immediately insert into
subscriber. Compared to Figure 4, we drop the client-side times-
tamp tracking. Instead, the server will use channels to notify all
clients in a room, each time a new message is posted there. In par-
ticular, see the tweaked definition of say.

queryI1 Run an SQL query returning columns from just a single
table (justifying the 1), applying a function to each result in
order, solely for its imperative side effects (justifying the I).

We loop over all channels associated with the current room, sending
the new message to each one.

There is one last change from Figure 4. The onload attribute
of our <body> tag still contains code to run immediately after the
page is loaded. This time, before we initialize the Log structure,
we also create a new thread with the spawn primitive. That thread
loops forever, blocking to receive messages from the freshly created
channel and add them to the log.

Threads follow a simple cooperative semantics, where the pro-
gramming model says that, at any moment in time, at most one
thread is running across all clients of the application. Execution
only switches to another thread when the current one terminates
or executes a blocking operation, among which we have RPCs
and channel recv. Of course, the Ur/Web implementation will run
many threads at once, with an arbitrary number on the server and
one JavaScript thread per client, but the implementation ensures
that no behaviors occur that could not also be simulated with the
simpler one-thread-at-a-time model.

This simple approach has pleasant consequences for program
modularity. The example of Figure 6 only shows a single program
module taking advantage of channels. It is possible for channels to
be used freely throughout a program, and the Ur/Web implemen-
tation takes care of routing messages to clients, while maintaining
the simple thread semantics. For instance, the Log module could
use channels privately, without disrupting the use of channels in
Room. Manual long-polling approaches require explicit dispatching
logic, to the different parts of an application waiting for server no-
tifications, because in practice a client can only afford to have one
long-polling connection active at once.

Figure 6 contains no explicit deallocation of clients that have
stopped participating. The Ur/Web implementation detects client
departure using a heartbeating mechanism. When a client departs,
the runtime system atomically deletes from the database all ref-
erences to that client’s channels. In this respect, channels in the
database act like weak pointers. A database row with a field typed
like channel T will be deleted outright when the owning client de-
parts. When a row contains a field of type option (channel T),
which may hold either a channel or a null value, references to dead
channels are merely nulled out. All clean-up operations described
in the last two sentences commute with each other, so there is no
need to specify the order in which different channel references for a
single departed client are dealt with. Automatic deletion of channel
references provides a kind of modularity similar to what garbage
collection provides for heap-allocated objects.

Before wrapping up the tutorial part of the paper, we want to
emphasize how this sequence of examples has demonstrated key
Ur/Web design principles. Early in the sequence, we settled on one
interface for the Room module. As we progressed through fancier
implementations, no changes were required to the main function or
any global application configuration file. Strong encapsulation of
module state guarantees that code outside the module cannot dis-
tinguish between alternatives. Throughout all versions of the appli-
cation, we also maintained the simple concurrency abstraction of
one thread running at a time, with context switches only at well-
defined points.

3. Implementation
The Ur/Web compiler is implemented in Standard ML, in about
55,000 lines of code. It compiles Ur/Web source files to run on the
server, as native POSIX Threads binaries via C; and on the client,
as JavaScript. Compiled applications are linked with a runtime
system, with both a server part, in about 5,000 lines of C; and a
client part, in about 1,500 lines of JavaScript.

We summarize here some of the less obvious aspects of the
implementation.

160

3.1 Atomic Execution of Database Operations
The focus on atomic execution in Ur/Web is inspired by the
database community’s decades of experience with transactions [17],
an idea that originated in that world. Many production-quality
database servers support various flavors of atomicity. Since version
9.1, PostgreSQL has supported truly atomic (serializable) transac-
tions [30]. In other words, it looks to arbitrary database clients as
if their sequences of SQL operations execute without interference
by other threads. We recommend using Ur/Web with PostgreSQL,
but it is also possible to use other backends that do not quite pro-
vide serializable transactions, at the cost of weakening Ur/Web’s
operational semantics.

We have been surprised at the near absence of program-
ming frameworks that take advantage of serializable or almost-
serializable database transactions. Typically, database engines im-
plement these abstractions with combinations of locking and opti-
mistic concurrency. In either case, it is possible for operations to
encounter serialization failures (with locking because of deadlock,
and with optimistic concurrency because a conflict is detected).
Popular SQL client libraries indicate serialization failure as just
another error code returnable by any operation. Applications must
check for this code after every operation, being prepared to do
something sensible when it appears.

In contrast, Ur/Web hides serialization failures completely. Any
serialization failure in an Ur/Web transaction execution undoes and
restarts the transaction. The transaction monad is carefully de-
signed so that all side effects may be undone as necessary. The
Ur/Web runtime system uses C’s setjmp/longjmp to allow revert-
ing to the start of a transaction, from arbitrary code running within
it. Since server threads share state only through the database, it is
easy to run each remote call with a fresh private heap, so that un-
doing heap effects is a constant-time operation.

By hiding serialization failures automatically, Ur/Web is able to
present to programmers the clean transactional abstraction sketched
in the last section.

3.2 Message Routing with Channels
It would violate the transactional abstraction to send messages to
clients immediately during send operations. Instead, sends are
appended to a thread-local log. At a transaction’s commit point,
where all operations have completed without serialization failures,
we atomically execute all message sends.

The server may not connect directly to clients to hand off mes-
sages. Instead, clients periodically open long-polling connections
to the server. If a client is connected at the point where the server
wants to hand off a message, the message is written directly to the
client, and the connection is closed. Otherwise, messages for clients
are appended to server-side buffers maintained per client. If a client
connects again when its buffer is nonempty, all queued messages
are sent immediately as the HTTP response, and the connection is
closed.

The last (implicit) ingredient of message routing is garbage-
collecting dead channels. A heartbeat mechanism detects dead
clients. For each application, the compiler generates a C function
parameterized on a client ID, to remove all database references to
that client. Whenever a client departs, that C function is run in-
side a transaction of its own. Since client data structures may be
reused across departures, this use of database transactions interacts
critically with transactions for normal remote calls, to ensure that
messages are not accidentally sent to new clients who have taken
over the data structures of intended recipients who have already
departed. From the perspective of an atomic remote call, any client
is either fully present or fully absent, for the whole transaction.

3.3 Implementing Functional-Reactive GUIs
In earlier sections, we discussed how Ur/Web HTML fragments
are implicitly instrumented for incremental recomputation via the
signal monad. Each fragment is conceptually a function over the
current values of all data sources, and the runtime system should
understand well enough which sources matter for each fragment,
to avoid wasteful recomputation of fragments that do not depend
on a set of source changes. Implementing this semantics requires
using custom data structures that are periodically transformed and
installed into browsers’ normal data structures for dynamic HTML
trees, called the Document Object Model (DOM).

One key data structure appears in the JavaScript parts of the run-
time system. Rather than representing HTML fragments as strings,
we instead use what is morally an algebraic datatype with 3 con-
structors. The simplest constructor injects literal HTML strings.
A two-argument constructor concatenates two values. Finally, one
constructor injects a JavaScript function (compiled from Ur/Web
code) that will be used as an event handler or signal, e.g. in an
onclick or <dyn> signal attribute. This datatype is easily forced
into normal HTML code, but the explicit closures within it force
the JavaScript garbage collector to keep alive any objects that the
handlers depend on.

A crucial piece of logic appears in the implementation of the
<dyn> pseudotag, which injects signals into HTML fragments. The
runtime system begins by evaluating the signal with the current
data source values, producing a value in the datatype from the
prior paragraph. That value is then forced into a normal HTML
string, replacing all closure references with reads from positions of
a global array where we have stashed the closures. In the new DOM
tree node created from this code, we also record which slots in
that closure array we have used. Additionally, the signal evaluation
process saved the set of sources that were read. We only need to
rerun the signal if any of these sources change. This set of sources
is also saved in the new DOM node.

Data sources are represented as records containing data values
and sets of DOM nodes that are listening for changes. Whenever a
source changes, all listening nodes must be recomputed. Recompu-
tation needs to deallocate the old HTML contents of a node, includ-
ing freeing its global closures and removing it and its subtrees from
the listener sets of sources. It is precisely to enable this cleanup that
we save sets of closure slots and sources in each DOM node. Re-
computation must also update these sets appropriately.

4. Evaluation
In this section, we evaluate the effectiveness of the Ur/Web imple-
mentation as a practical programming tool, considering both per-
formance and programmer productivity. We start with a discussion
of some microbenchmarks and then turn to a summary of deployed
Ur/Web applications.

4.1 Microbenchmarks
Readers might worry that Ur/Web’s higher abstraction level vs.
mainstream frameworks may bring an unacceptable performance
cost. We briefly consider performance via microbenchmarks, where
in important cases we find exactly the opposite comparison to less
abstract frameworks.

An Ur/Web solution was entered into the TechEmpower Web
Framework Benchmarks3, a third-party comparison initiative run
independently of the author of this paper, using contributed bench-
mark solutions from different communities, including an Ur/Web
solution written in part by the author. Evaluation centers on
throughput of Web applications, or how many concurrent requests

3 http://www.techempower.com/benchmarks/

161

http://www.techempower.com/benchmarks/

their server-side pieces can handle per second. Latency (time to
service a single request) is also measured, but not highlighted as
much on the results pages.

Ur/Web does particularly poorly on a test with many database
writes. Most frameworks in the competition do not enforce trans-
actional semantics as Ur/Web does, and on every remote call we
pay a performance cost for runtime analysis of transactional opera-
tions, paying the even higher cost of transaction restart when there
is much contention. We hope to convince the benchmark coordina-
tors to add a version of this test where implementations are required
to use transactions.

However, on more realistic workloads, Ur/Web does very well.
Exactly one test (fortunes) involves actual generation of HTML
pages, based on results of database queries. On the benchmark’s
highest-capacity server, with 40 hardware threads all running
Ur/Web server threads, Ur/Web achieves the best latency (2.1 ms)
and the 4th-best throughput (about 110,000 requests per second)
among all frameworks. This test (in Round 9 of the benchmarks)
involved about 70 different configurations of about 60 different
frameworks, including almost all of the most popular frameworks
for real-world applications. We think these results are particularly
encouraging given that our competitors are mostly not running
within SQL transactions (i.e., they provide weaker semantics that
make programming more challenging).

4.2 Deployed Applications
The Ur/Web implementation has been available as open source for
long enough to develop a modest community of users. Beside the
author of this paper, 12 users have contributed patches. Several se-
rious Ur/Web applications have also been deployed on the Web.
In this subsection, we summarize the ones we are aware of. Each
is written by programmers outside the core Ur/Web development
team, and there are no duplicate authors among the applications we
survey, with one exception as noted below. Table 1 lists the applica-
tions and their URLs and authors. Nearly all of these applications
also use Ur/Web’s foreign function interface (FFI), for interfacing
with C and JavaScript libraries.

We especially want to highlight the first entry in the table,
a profitable business based on an Ur/Web application. BazQux
Reader is a Web-based reader for feeds of syndicated content,
via formats like RSS and Atom. It provides similar functionality
to the late Google Reader, but with many extras, like reading
comments on feeds in the same interface. BazQux mostly uses
Ur/Web’s reactive GUI features and RPCs, interfacing via our FFI
to a Riak4 database that is kept up-to-date by a separate Haskell
feed fetcher. As of this writing, there are about 2500 active BazQux
users with paid subscriptions. Average load on the application
is about 10 requests/second, with busy-period peaks above 150
requests/second. The Ur/Web source code of BazQux Reader is
available publicly on GitHub5.

The next two applications were developed by a single author.
Both relate to the cryptographic currency bitcoin. The Bitparking
Namecoin Exchange previously allowed visitors to trade bitcoins
to do the equivalent of registering Internet domain names, within
an alternative decentralized protocol for name mapping. It was de-
commissioned recently after 2 years of operation. The developer
notes that most similar services were plagued by generic Web se-
curity problems (e.g., cross-site request forgery) in that period, but
the Ur/Web-based exchange maintained a spotless record. The Bit-
coin Merge Mining Pool has been running since 2011, managing a
confederation of bitcoin miners. At its peak in 2013, about 10% of
global progress in bitcoin mining worked through this application.

4 http://basho.com/riak/
5 http://github.com/bazqux/bazqux-urweb

It serves about 400 requests per second on average. This family of
applications has mostly stressed Ur/Web’s SQL interface, RPC sys-
tem, and foreign-function interface (to connect to implementations
of nontrivial cryptographic protocols).

The Big Map of Latin America is an animated presentation of
that region’s history. The user moves a slider widget to step through
time, which places various icons around a colorful map, indicating
events in categories like economics and the environment. Clicking
on an icon opens an overlay with an illustrated article going into
more detail. There is also a less-polished administrative interface
for editing the history database with conventional HTML forms.

Ecosrv serves firmware upgrades for CGNAT network hard-
ware devices, which connect to the Ur/Web application via an
HTTP-based API. A more traditional GUI also displays statistics
on recent activity. Ur/Web source code is available on GitHub6.

Logitext is a graphical interface to sequent-calculus proofs, in-
tended for use in teaching logic to undergraduates. Proof problems
appear embedded within tutorial documents. Each solution is a
tree of deduction steps, where the user adds a new step by click-
ing on the right subformula. The trees appear rendered in classic
inference-rule notation. The backend for executing proof steps is
the Coq proof assistant, invoked via RPCs and the FFI with some
Haskell code involved.

Most of these applications’ developers have no special con-
nection to the Ur/Web development team, so their decisions to
adopt Ur/Web provide some validation of the language design. We
asked developers what they saw as the biggest positive and negative
points of Ur/Web. There was a clear consensus that the biggest plus
was the simple model for coding client-side GUIs that interact eas-
ily with server-side code. The most mentioned pain point was the
way that the Ur/Web compiler checks that server-side code does not
call functions that only make sense in the client, or vice versa. In
designing the language, we were worried that it would be too com-
plex to extend the type system to track such constraints, tagging
monadic computation types with sidedness information. However,
the approach we adopted instead, with ad-hoc static analysis on
whole programs at compile time, leads to error messages that con-
fuse even experienced Ur/Web programmers. In general, improve-
ments to error messages and performance of the compiler (which
does specialized whole-program optimization) are high on our list
of future priorities.

One of the main motivations for designing the Ur language [8]
was supporting complex metaprogramming, with detailed compile-
time checking of metaprograms inspired by dependent type theory.
As far as we know, the production Ur/Web applications are cur-
rently making only modest use of metaprogramming, e.g. for small
convenience operations related to polymorphic record and variant
types. The HTML and SQL encodings make extensive use of type-
system features that go beyond those of ML and Haskell, but there
has not yet been much direct adoption of such features outside the
Ur/Web standard library.

5. Related Work
MAWL [2] was an early domain-specific language for safe pro-
gramming of form-based Web applications. The MAWL compiler
did static verification of HTML validity and of compatibility be-
tween forms and handlers. MAWL included no features for build-
ing libraries of abstractions, as it tied together forms and handlers
via fixed sets of template files.

Continuation-based Web application systems make a different
set of trade-offs than Ur/Web does in supporting abstraction. The
PLT Scheme Web Server [20] provides completely first-class sup-

6 http://github.com/grwlf/urweb-econat-srv

162

http://basho.com/riak/
http://github.com/bazqux/bazqux-urweb
http://github.com/grwlf/urweb-econat-srv

Application URL Author
BazQux Reader http://www.bazqux.com/ Vladimir Shabanov

Big Map of Latin America http://map.historyisaweapon.com/ Daniel Patterson
Bitcoin Merge Mining Pool http://mmpool.org/ Chris Double

Bitparking Namecoin Exchange [now defunct] http://exchange.bitparking.com/ Chris Double
Ecosrv http://ecosrv.hit.msk.ru/ Sergey Mironov

Logitext http://logitext.mit.edu/ Edward Z. Yang

Table 1. Deployed Ur/Web applications

port for continuations-as-URLs, making it very easy to construct
many useful abstractions. This platform works without a static type
system, fitting the preferences of many programmers today. As a
consequence, however, many kinds of strong encapsulation are im-
possible; for instance, the ability of programs to generate arbitrary
HTML and JavaScript as strings means that any client-side com-
ponent discipline can be subverted. Seaside [15] provides strong
encapsulation guarantees at the expense of not exposing continu-
ations as first-class URLs. Seaside’s component system also only
runs server-side; client-side code uses the normal JavaScript model,
with the document exposed as a mutable global variable, with sub-
trees assigned names from a global namespace.

As far as we are aware, no continuation-based systems give
persistent resources like database tables first-class status, which
prevents encapsulation of these resources. That design decision
makes it easier to build on top of existing programming languages
and provide simpler libraries. We expect that different developers
will prefer different positions in this design space. We hope that
many fans of strong encapsulation in object-oriented and functional
languages will prefer the style advocated in this paper. We have not
found any previous recommendations of that style, so part of our
mission in this paper is to add such a recommendation to the larger
debate.

Mutable state enables new modularity disciplines. Web cells [26]
are a variant of mutable references (implemented in the PLT Web
Server) that provide the abstraction of each Web page having its
own copy of the heap, while admitting efficient implementation.
Initial Web cells implementations only worked with server-side
storage of all continuations, which imposes significant storage re-
quirements. More recent work [25] has shown how to represent
Web-cell-using continuations compactly enough that these con-
tinuations may be serialized in full within URLs. Ur/Web’s more
static approach makes it possible for an algorithm to find all pos-
sible entry points to an application, enabling rigorous verification
and testing as in some past work doing static analysis on Ur/Web
code for security [9], while the PLT approach is more lightweight
and easier for mainstream programmers to learn.

The Links [11] language pioneered strong static checking of
multiple-tier Web applications, where the code for all tiers is col-
lected in a single language. Where Ur/Web includes explicit mark-
ers (e.g., rpc) of control transfer between client and server, Links
follows a more implicit approach [13], where different first-class
functions are tagged as belonging to different sides and are au-
tomatically run on those sides when called. Links also includes a
novel means of abstraction for HTML forms based on idioms [12].
Still, much of Ur/Web is inspired closely by Links and can be
thought of as layering modularity features upon that foundation.
Links does not include a module system or other vehicle for type
abstraction, and any piece of Links code may access any database
table or DOM subtree by referring to its textual name. Some other
similar systems have been presented, including JWIG [10], which
is a Java extension based around new types and program analysis.

Hop [33] is another unified Web programming language, this
time dynamically typed and based on Scheme. Many elements are

quite similar to the patterns demonstrated in our Ur/Web exam-
ples, including a simple RPC syntax (to server endpoints called
services) and a quotation and antiquotation convention for easy
mixing of server- and client-side code. GUI interaction follows the
usual browser model, where a page is a mutable tree that can be
walked arbitrarily by any client-side code. Hop is based on no dis-
tinguished database integration, instead supporting access to a va-
riety of database systems via libraries. Hop servers support a novel
means of configurable concurrency for pipeline execution [32], but
we do not believe that any transaction-based model has been im-
plemented, and it does not seem obvious how to implement such
a configuration without more fundamental language support. The
HipHop extension [5] uses synchronous reactive programming to
support a different declarative style of organizing interactions be-
tween stages of processes that span clients and servers.

Ocsigen [3, 4] is an OCaml-based platform for building dy-
namic Web sites in a unified language, with static typing that
rules out many potential programming mistakes. The concurrency
model [36] is cooperative multithreading, on both client and server.
The Ocsigen ecosystem includes libraries for both statically typed
SQL database access and server-to-client message passing, the lat-
ter via a mechanism called buses. There is no support for grouping
the two sorts of actions into transactions; rather, the semantics is
the usual interleaving one, with cooperative context-switch points.
The SQL library also allows arbitrary access to any table from any
module that knows its string name, even allowing different modules
to declare different versions of a table with different, incompati-
ble types. There is optional library support for a functional-reactive
GUI programming style.

The Opa language7 is another statically typed unified language
for database-backed Web applications. Its database integration is
with the nonrelational system MongoDB8, which does not support
transactions, so Opa inherits a semantics that exposes interleav-
ing of concurrent requests. Opa supports a precursor to the sort of
database table encapsulation that we have described, where mod-
ules may declare private components of the database state. How-
ever, the Opa mechanism forces programmers to assign compo-
nents names in a global namespace. The compiler will prevent du-
plicate use of a name, which thwarts threats against encapsulation,
but which also forces authors of different modules to coordinate
on a naming scheme. Similar issues arise in Opa’s use of a mostly
standard model of client-side GUIs, where elements are assigned
textual names in a global namespace, and where the visible page is
changed by mutating elements directly.

Strong encapsulation has been supported through capability sys-
tems [22], including the Capsules system [21] for isolating Web
servlets. Capsules is built on top of Java, so, compared to Ur/Web,
it provides an easier migration path for mainstream programmers.
However, Capsules does not support database access, and, among
cookies and other persistent values that are supported, true encapsu-
lation is not possible. The reason is that a Capsules application must

7 http://opalang.org/
8 http://www.mongodb.org/

163

http://www.bazqux.com/
http://map.historyisaweapon.com/
http://mmpool.org/
http://exchange.bitparking.com/
http://ecosrv.hit.msk.ru/
http://logitext.mit.edu/
http://opalang.org/
http://www.mongodb.org/

contain trusted code to delegate persistent resources to components,
which implies that a component must know which resources its
subcomponents use. In Ur/Web, components use special declara-
tions like table to, in effect, seed their initial capability sets in a
static and modular way.

Some ostensibly capability-safe subsets of JavaScript have been
proposed, including Caja9. Formal analysis using operational se-
mantics [24] has uncovered holes in some of these languages and
suggested practical formal conditions that guarantee absence of
holes. That line of work is complementary to our approach from
this paper, as it provides a simple foundation without suggesting
which abstractions should be built on it. With Ur/Web’s current im-
plementation, we depend on the fact that all modules are compiled
from type-checked Ur/Web source. Instead, we could target some
common safe JavaScript subset, ensuring safe interoperation with
components built directly in JavaScript or with other compilers.

Several other languages and frameworks support functional-
reactive programming for client-side Web GUIs, including Flap-
jax [28], which is available in one flavor as a JavaScript library;
and Elm [14], a new programming language. These libraries imple-
ment the original, “pure” version of functional-reactive program-
ming, where key parts of programs are written as pure functions
that transform input streams into streams of visible GUI content.
Such a style is elegant in many cases, but it does not seem compat-
ible with the modularity patterns we demonstrated in Section 2.2.1,
where it is natural to spread input sources to a single stream across
different parts of a program. Ur/Web supports that kind of modu-
larity by adopting a hybrid model, with imperative event callbacks
that trigger recomputation of pure code.

As far as we are aware, Ur/Web was the first Web program-
ming tool to support impure functional-reactive programming, but
the idea of reactive GUI programming in JavaScript is now main-
stream, and too many frameworks exist to detail here.

One popular JavaScript framework is Meteor10, distinguished
by its support for a particular reactive programming style. It inte-
grates well with mainstream Web development tools and libraries,
which is a nontrivial advantage for most programmers. Its standard
database support is for MongoDB, with no transactional abstrac-
tion or other way of taming simultaneous complex state updates.
Like Opa, Meteor allows modules to encapsulate named database
elements, but an exception is thrown if two modules have chosen
the same string name for their elements; module authors must co-
ordinate on how to divide a global namespace. Meteor supports
automatic publishing of server-side database changes into client-
side caches, and then from those caches into rendered pages. In
addition to automatic updating of pages based on state changes,
a standard DOM-based API for walking document structure and
making changes imperatively is provided, though it is not very id-
iomatic. Meteor’s machinery for reactive page updating involves a
more complex API than in Ur/Web. Its central concept is of im-
perative functions that need to be rerun when any of their depen-
dencies change, where Ur/Web describes reactive computations in
terms of pure code within the signal monad, such that it is easy to
rerun only part of a computation, when not all of its dependencies
have changed. Forcing purity on these computations helps avoid the
confusing consequences of genuine side effects being repeated on
each change to dependencies. The 7 lines of code near the start of
Section 2.2.1, together with the <dyn> pseudotag, give the com-
plete interface for reactive programming in Ur/Web, in contrast
with tens of pages of documentation (of dynamically typed func-
tions) for Meteor.

9 http://code.google.com/p/google-caja/
10 http://www.meteor.com/

Other popular JavaScript frameworks include Angular.js11,
Backbone12, Ractive13, and React14. A commonality among these
libraries seems to be heavyweight approaches to the basic struc-
ture of reactive GUIs, with built-in mandatory concepts of mod-
els, views, controllers, templates, components, etc. In contrast,
Ur/Web has its 7-line API of sources and signals. These main-
stream JavaScript frameworks tend to force elements of reactive
state to be enumerated explicitly as fields of some distinguished
object, instead of allowing data sources to be allocated dynami-
cally throughout the modules of a program and kept as private state
of those modules.

Microsoft’s TouchDevelop [6, 35] is another recent Web lan-
guage design, intended to appeal to novices. TouchDevelop allows
client code to manipulate distributed data structures directly, apply-
ing distributed-systems techniques automatically to enforce even-
tual consistency. Consequences of such changes flow automatically
into affected parts of documents, in a partly functional-reactive
style. Allowing direct manipulation of data structures by clients
raises security concerns, which Ur/Web avoids by funneling all
such manipulations through RPCs from client to server, running
code in a trusted environment where appropriate checks may be
applied, with the chance to use message-passing channels to no-
tify clients of updates in a globally consistent order. In general, the
TouchDevelop model seems superior for newcomers to Web pro-
gramming, while Ur/Web offers better robustness in a few senses.

The transactional abstraction has also been exposed in high-
level programming languages via the software transactional mem-
ory model [34], for instance in GHC Haskell [18]. Such sys-
tems provide a transactional interface over the classic model of
mutable, linked objects in a garbage-collected heap. Ur/Web’s
transaction monad is actually much closer to the original idea
of transactions from databases. The only mutable server-side state
in an Ur/Web application is in the SQL database (where columns
have only primitive types) and in message queues of channels, so
there is no need to do, e.g., conflict analysis on traces of accesses
to pointer-based data structures.

6. Conclusion
We have presented the design of Ur/Web, a programming language
for Web applications, focusing on a few language-design ideas that
apply broadly to a class of distributed applications. Our main mis-
sion is to promote two desiderata that programmers should be ask-
ing for in their Web frameworks, but which seem almost absent
from mainstream discussion. First, while mainstream practice is
drifting further away from the conceptual simplicity of transac-
tions and atomic execution of units of concurrent work, we suggest
holding on to simple concurrency models, unless forced away from
them by performance concerns. Second, while language-enforced
encapsulation is widely praised for conventional data structures, we
suggest that it ought to be generalized to key pieces of Web applica-
tions, like database tables and HTML subtrees, importing familiar
software-engineering benefits with new twists. Ur/Web is already
being used in serious production applications, and we hope lan-
guages adopting our principles can continue to help programmers
realize nontrivial functionality with less effort and more confidence
in correctness.

11 https://angularjs.org/
12 http://backbonejs.org/
13 http://www.ractivejs.org/
14 http://facebook.github.io/react/

164

http://code.google.com/p/google-caja/
http://www.meteor.com/
https://angularjs.org/
http://backbonejs.org/
http://www.ractivejs.org/
http://facebook.github.io/react/

Acknowledgments
For their bug reports, feature requests, patches, and enthusiasm,
we thank the early adopters of Ur/Web, including the application
authors acknowledged earlier but also many others. We also thank
Gergely Buday, Jason Gross, Arjun Guha, Barbara Liskov, Clément
Pit–Claudel, and the anonymous referees for their helpful feedback
on drafts of this paper. This work has been supported in part by
National Science Foundation grant CCF-1217501.

References
[1] J. Armstrong. Erlang – a survey of the language and its industrial

applications. In Proc. INAP, pages 16–18, 1996.

[2] D. Atkins, T. Ball, M. Benedikt, G. Bruns, K. Cox, P. Mataga, and
K. Rehor. Experience with a domain specific language for form-based
services. In Proc. DSL, 1997.

[3] V. Balat. Ocsigen: typing Web interaction with Objective Caml. In
Proc. ML Workshop, 2006.

[4] V. Balat, J. Vouillon, and B. Yakobowski. Experience report: Ocsigen,
a Web programming framework. In Proc. ICFP, pages 311–316.
ACM, 2009.

[5] G. Berry and M. Serrano. Hop and HipHop: Multitier web orchestra-
tion. In Proc. ICDCIT, pages 1–13, 2014.

[6] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato. It’s alive! Continuous feedback in UI
programming. In Proc. PLDI, pages 95–104. ACM, 2013.

[7] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-
integrated query. In Proc. ICFP, pages 403–416. ACM, 2013.

[8] A. Chlipala. Ur: Statically-typed metaprogramming with type-level
record computation. In Proc. PLDI, pages 122–133. ACM, 2010.

[9] A. Chlipala. Static checking of dynamically-varying security policies
in database-backed applications. In Proc. OSDI, pages 105–118, 2010.

[10] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Extending Java
for high-level Web service construction. TOPLAS, 25(6):814–875,
November 2003.

[11] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In Proc. FMCO, pages 266–296, 2006.

[12] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. The essence of form
abstraction. In Proc. APLAS, pages 205–220. Springer-Verlag, 2008.

[13] E. E. Cooper and P. Wadler. The RPC Calculus. In Proc. PPDP, pages
231–242. ACM, 2009.

[14] E. Czaplicki and S. Chong. Asynchronous functional reactive pro-
gramming for GUIs. In Proc. PLDI, pages 411–422. ACM, 2013.

[15] S. Ducasse, A. Lienhard, and L. Renggli. Seaside – a multiple control
flow Web application framework. In European Smalltalk User Group
– Research Track, 2004.

[16] A. Frisch. OCaml + XDuce. In Proc. ICFP, pages 192–200. ACM,
2006.

[17] J. Gray. The transaction concept: Virtues and limitations (invited
paper). In Proc. VLDB, pages 144–154, 1981.

[18] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. In Proc. PPoPP, pages 48–60. ACM, 2005.

[19] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. In Proc. ICFP, pages 11–22. ACM, 2000.

[20] S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T. Graunke, G. Pet-
tyjohn, and M. Felleisen. Implementation and use of the PLT Scheme
Web Server. Higher Order Symbol. Comput., 20(4):431–460, 2007.

[21] A. Krishnamurthy, A. Mettler, and D. Wagner. Fine-grained privilege
separation for Web applications. In Proc. WWW, 2010.

[22] H. M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984. ISBN 0932376223.

[23] D. MacQueen. Modules for Standard ML. In Proc. LFP, pages 198–
207. ACM, 1984.

[24] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isolation
of untrusted Web applications. In Proc. IEEE S&P, pages 125–140,
2010.

[25] J. McCarthy. Automatically RESTful Web applications or, marking
modular serializable continuations. In Proc. ICFP. ACM, 2009.

[26] J. McCarthy and S. Krishnamurthi. Interaction-safe state for the Web.
In Proc. Scheme and Functional Programming, 2006.

[27] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling objects,
relations and XML in the .NET framework. In Proc. SIGMOD, pages
706–706. ACM, 2006.

[28] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: A programming lan-
guage for Ajax applications. In Proc. OOPSLA, pages 1–20. ACM,
2009.

[29] S. L. Peyton Jones and P. Wadler. Imperative functional programming.
In Proc. POPL, pages 71–84. ACM, 1993.

[30] D. R. K. Ports and K. Grittner. Serializable Snapshot Isolation in
PostgreSQL. Proc. VLDB Endow., 5(12):1850–1861, Aug. 2012.

[31] J. H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999. ISBN 0-521-48089-2.

[32] M. Serrano. Hop, a fast server for the diffuse web. In Proc. COORDI-
NATION, pages 1–26. Springer-Verlag, 2009.

[33] M. Serrano, E. Gallesio, and F. Loitsch. Hop, a language for program-
ming the Web 2.0. In Proc. DLS, 2006.

[34] N. Shavit and D. Touitou. Software transactional memory. In Proc.
PODC, pages 204–213. ACM, 1995.

[35] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. TouchDe-
velop: Programming cloud-connected mobile devices via touchscreen.
In Proc. ONWARD, pages 49–60. ACM, 2011.

[36] J. Vouillon. Lwt: A cooperative thread library. In Proc. ML Workshop,
pages 3–12. ACM, 2008.

[37] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proc. POPL, pages 60–76. ACM, 1989.

165

	Introduction
	A Tutorial Introduction to Ur/Web
	HTML and SQL
	Adding More Encapsulation

	Client-Side GUI Scripting
	Reactive GUIs
	Remote Procedure Calls

	Message-Passing from Server to Client

	Implementation
	Atomic Execution of Database Operations
	Message Routing with Channels
	Implementing Functional-Reactive GUIs

	Evaluation
	Microbenchmarks
	Deployed Applications

	Related Work
	Conclusion

