Verified Causal Broadcast with Liquid Haskell

PATRICK REDMOND, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA

NIKI VAZOU, IMDEA, Spain

LINDSEY KUPER, University of California, Santa Cruz, USA

Protocols to ensure that messages are delivered in causal order are a ubiquitous building block of distributed
systems. For instance, key-value stores can use causally ordered message delivery to ensure causal consistency
— a sweet spot in the availability/consistency trade-off space — and replicated data structures rely on the
existence of an underlying causally-ordered messaging layer to ensure that geo-distributed replicas eventually
converge to the same state. A causal delivery protocol ensures that when a message is delivered to a process,
any causally preceding messages sent to the same process have already been delivered to it. While causal
message delivery protocols are widely used in distributed systems, verification of the correctness of those
protocols is less common, much less machine-checked proofs about executable implementations.

We implemented a standard causal broadcast protocol in Haskell and used the Liquid Haskell solver-aided
verification system to express and mechanically prove that messages will never be delivered to a process in an
order that violates causality. To do so, we express a process-local causal delivery property using refinement
types, and we prove that it holds of our implementation using Liquid Haskell’s theorem-proving facilities,
resulting in the first machine-checked proof of correctness of an executable causal broadcast implementation.
We then put our verified causal broadcast implementation to work as the foundation of a distributed key-value
store implemented in Haskell.

1 INTRODUCTION

Causal message delivery [Birman and Joseph 1987a; Birman et al. 1991; Birman and Joseph 1987b;
Schiper et al. 1989] is a fundamental communication abstraction for distributed computations in
which processes communicate by sending and receiving messages. One of the challenges of im-
plementing distributed systems is the asynchrony of message delivery; messages arriving at the
recipient in an unexpected order can cause confusion and bugs. A causal delivery protocol can
ensure that, when a message m is delivered to a process p, any message sent “before” m (in the
sense of Lamport’s “happens-before”; see Section 2.1) will have already been delivered to p. When
a mechanism for causal message delivery is available, it simplifies the implementation of many
important distributed algorithms, such as replicated data stores that must maintain causal con-
sistency [Ahamad et al. 1995; Lloyd et al. 2011], conflict-free replicated data types [Shapiro et al.
2011b], distributed snapshot protocols [Acharya and Badrinath 1992; Alagar and Venkatesan 1994],
and applications that “involve human interaction and consist of large numbers of communication
endpoints” [van Renesse 1993]. A particularly useful special case of causal delivery is causal broad-
cast, in which each message is sent to all processes in the system. For example, a causal broadcast
protocol enables a straightforward implementation strategy for a causally consistent replicated
data store — one of the strongest consistency models available for applications that must max-
imize availability and tolerate network partitions [Mahajan et al. 2011]. Conflict-free replicated
data types (CRDTs) implemented in the operation-based style [Gomes et al. 2017; Shapiro et al.
2011a,b] also assume the existence of an underlying causal broadcast layer to deliver updates to
replicas [Shapiro et al. 2011b, §2.4].

What can go wrong in the absence of causal broadcast? Suppose Alice, Bob, and Carol are ex-
changing group text messages. Alice sends the message “I lost my wallet..” to the group, then
finds the missing wallet between her couch cushions and follows up with a “Found it!” message to
the group. In this situation, depicted in Figure 1 (left), Alice has a reasonable expectation that Bob
and Carol will see the messages in the order that she sent them, and such first-in first-out (FIFO)

Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

Alice Bob Carol Alice Bob Carol

< “l lost my wallet..” ‘ “I lost my wallet...”

“Found it!”

e Found it!”

“Glad to hear it!”

Fig. 1. Two executions that violate causal delivery (Definition 2). The vertical direction represents time, where
later is lower; the horizontal direction represents space. Solid arrows represent messages between processes.
On the left, Carol sees Alice’s messages in the opposite order of how they were sent. On the right, Carol sees
Bob’s message before sees Alice’s second message. The dashed arrows in both examples depict how a causal
delivery mechanism (Section 2.2) might delay the received messages in a buffer and deliver them later on,
once doing so would not violate causal ordering.

delivery is an aspect of causal message ordering. While FIFO delivery is already enforced! by stan-
dard networking protocols such as TCP [Postel 1981], it is not enough to eliminate all violations of
causality. In an execution such as that in Figure 1 (right), FIFO delivery is observed, and yet Carol
sees Bob’s message only after having seen Alice’s initial “T lost my wallet..” message, so from
Carol’s perspective, Bob is being rude. The issue is that Bob’s “Glad to hear it!” response causally
depends on Alice’s second message of “Found it!”, yet Carol sees “Glad to hear it!” first. What is
called for is a mechanism that will ensure that, for every message that is applied at a process, all
of the messages on which it causally depends — comprising its causal history — are applied at that
process first, regardless of who sent them.

A causal broadcast protocol addresses the problem by buffering messages at the receiving end
until all causally preceding broadcast messages have been applied. The dashed arrows in Figure 1
represent the behavior of such a buffering mechanism. A typical implementation strategy is to
have the sender of a message augment the message with metadata (for instance, a vector clock;
see Section 2.2.1) that summarizes that message’s causal history in a way that can be efficiently
checked on the receiver’s end to determine whether the message needs to be buffered or can be
applied immediately to the receiver’s state. Although such mechanisms are well-known in the
distributed systems literature [Birman and Joseph 1987a; Birman et al. 1991; Birman and Joseph
1987b], their implementation is “generally very delicate and error prone” [Bouajjani et al. 2017],
motivating the need for machine-verified implementations of causal delivery mechanisms that are
usable in real, running code.

ITCP’s FIFO ordering guarantee applies so long as the messages in question are sent in the same TCP session. For cross-
session guarantees, additional mechanisms are necessary.

Verified Causal Broadcast with Liquid Haskell),

To address this need, we use the Liquid Haskell platform to implement and verify the correct-
ness of a well-known causal broadcast protocol [Birman et al. 1991]. Liquid Haskell is an extension
to the Haskell programming language that adds support for refinement types [Rushby et al. 1998;
Xi and Pfenning 1998], which let programmers specify logical predicates that restrict, or refine, the
set of values described by a type. Beyond giving more precise types to individual functions, Liquid
Haskell’s reflection [Vazou et al. 2018, 2017] facility lets programmers use refinement types to spec-
ify “extrinsic” properties (see Section 3.1) that can relate multiple functions, and then prove those
properties by writing Haskell programs to inhabit the specified types. We use this theorem-proving
capability to prove that in our causal broadcast implementation, processes deliver messages in
causal order, ruling out the possibility of causality-violating executions like those in Figure 1.

Our causal broadcast implementation is a Haskell library that can be used in a variety of ap-
plications, including key-value stores, CRDTs, distributed snapshot algorithms, and peer-to-peer
applications, and can be extended into a totally-ordered broadcast protocol that also preserves the
causal order of messages [Birman et al. 1991].2 While previous work has mechanically verified the
correctness of applications of causal ordering in distributed systems (such as causally consistent
distributed key-value stores [Gondelman et al. 2021; Lesani et al. 2016]), factoring the causal broad-
cast protocol out into its own standalone, verified component means that it can be reused in each
of these contexts. There is a need for such a standalone component: for instance, recent work on
mechanized verification of CRDT convergence [Gomes et al. 2017] assumes the existence of a cor-
rect causal broadcast mechanism for its convergence result to hold. Our separately-verified library
could be plugged together with such verified CRDT implementations to get an end-to-end correct-
ness guarantee. Therefore our library enables modular verification of higher-level properties for
applications built on top of the causal broadcast layer. Finally, an advantage of Liquid Haskell as
a verification platform is that it results in immediately executable Haskell code, with no extraction
step necessary, as with proof assistants such as Coq [Bertot and Castran 2010] or Isabelle [Wenzel
et al. 2008] — making it easy to integrate our library with existing Haskell code.

We make the following specific contributions:

o We identify process-local causal delivery, a property that allows us to reduce the problem of
determining that a distributed execution observes causal delivery to one that can be verified
using information locally available at each process (Section 2.3).

o We identify design choices that make a standard causal broadcast protocol amenable to ver-
ification. In particular, we implement the protocol in terms of a state transition system, and
we implement message broadcast in terms of message delivery, leading to a simpler proof
development (Section 3.3).

e We give a mechanized proof that our causal broadcast library implementation satisfies the
process-local causal delivery property, which is, to our knowledge, the first machine-checked
proof of correctness of an executable causal broadcast implementation (Section 4).

To evaluate the practical usability of our library, we put it to work as the foundation of a distributed
in-memory key-value store and empirically evaluate its performance when deployed to a cluster
of geo-distributed nodes (Section 5). Section 6 contextualizes our contributions with respect to
the existing research, and Section 7 summarizes our work. All of our code, including our causal
broadcast library, our proof development, and our key-value store case study, is available in the
anonymously submitted supplemental material.

2Totally-ordered delivery does not imply causal delivery in general, although Birman et al. [1991]’s extension of causal
broadcast to atomic broadcast provides both.

ss Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

2 SYSTEM MODEL AND VERIFICATION TASK

In this section, we describe our system model (Section 2.1) and the causal broadcast protocol that
we implemented and verified (Section 2.2). We then define the process-local causal delivery property
that we need to show holds of our implementation (Section 2.3).

2.1 System Model

We model a distributed system as a finite set of N processes (or nodes) p;, i : 1..N, distinguished
by process identifier i. Processes communicate with other processes by sending and receiving
messages. In our setting, all messages are broadcast messages, meaning that they are sent to all
processes in the system, including the sender itself.> Our network model is asynchronous, meaning
that sent messages can take arbitrarily long to be received. Furthermore, for our safety result we
need not assume that sent messages are eventually received, so our network is also unreliable
(although such an assumption would be necessary for liveness; see Section 4.3 for a discussion).

We distinguish between message receipt and message delivery: processes can receive messages
at any time and in any order, and they may further choose to deliver a received message, causing
that message to take effect at the node receiving it and be handed off to, for example, the user
application running on that node. Importantly, although nodes cannot control the order in which
they receive messages, they can control the order in which they deliver those messages. Imagine
a “mail clerk” on each node that intercepts incoming messages and chooses whether, and when,
to deliver each one (by handing it off to the above application layer and recording that it has
been delivered). Our task will be to ensure that the mail clerk delivers the messages in an order
consistent with causality, regardless of the order in which messages were received — implementing
the behavior illustrated by the dashed arrows in Figure 1.

For our discussion of causal delivery, we need to consider two kinds of events that occur on
processes: broadcast events and deliver events. We will use broadcast(m) to denote an event that
sends a message m to all processes,* and deliver,, (p) to denote an event that delivers m on process
p. We refer to the totally ordered sequence of events that have occurred on a process p as the
process history, denoted h,,. For events e and e’ in a process history h,, we say that e and e’ are in
process order, written e —, ¢€’, if e occurs in the subsequence of h, that precedes e’.

An execution of a distributed system consists of the set of all events in all process histories,
together with the process order relation —, over events in each h, and the happens-before relation
—pp over all events. The happens-before relation, due to Lamport [1978], is an irreflexive partial
order that captures the potential causality of events in an execution: for any two events e and e’,
if e —p; €', then e may have caused e’, but we can be certain that e’ did not cause e.

DEFINITION 1 (HAPPENS-BEFORE (—jp) [LAMPORT 1978]). Given events e and e’, we say that e
happens before e’, written e —pj, €, iff:

e ¢ and e’ occur in the same process history h, withe —, e’; or

e ¢ isa message broadcast event and e’ is its corresponding deliver event, that is, e = broadcast(m)
and e’ = deliver,(m) for a given message m and some process p; or

e ¢ —pp e ande”’ —yy € for some evente” .

Events in the same process history are totally ordered by the happens-before relation (For example,
in Figure 1, Alice’s broadcast of “I lost my wallet..” happens before her broadcast of “Found it!”),

3For simplicity, we omit the messages that processes send to themselves from examples in Figures 1, 2, and 3. We assume
that these self-sent messages are sent and delivered in one atomic step on the sender’s process.

4 Although a broadcast message has N recipients, and may be implemented as N individual unicast messages under the
hood, we treat the sending of the message as a single event on the sender’s process.

Verified Causal Broadcast with Liquid Haskell),

and the broadcast of a given message happens before any delivery of that message. We say that
m —pp m’ iff broadcast(m) —pp, broadcast(m’), using the notation —;, for both relations.

To avoid anomalous executions like that in Figure 1, our task will be to ensure that processes
deliver messages in an order consistent with the —;, partial order. This property is known as
causal delivery; our definition is based on standard ones in the literature [Birman et al. 1991; Raynal
et al. 1991]:

DEFINITION 2 (CAUSAL DELIVERY). An execution x observes causal delivery if, for all processes p
in x, for all messages my and my such that deliver,(m,) and deliver,(m3) are in hy,

my —pp mo = deliver,(m1) —, deliver,(ma).

The causal delivery property says that if message m; is sent before message mso in an execution,
then any process delivering both m; and mg should deliver m; first. For example, in Figure 1 (left),
the “I lost my wallet..” message causally precedes the “Found it!” message, because Alice broad-
casts both messages with “I lost my wallet...” first, and so Bob and Carol would each need to deliver
“I lost my wallet..” first for the execution to observe causal delivery. Furthermore, under causal
delivery m; and my must be delivered in causal order even if they were sent by different processes.
For example, in Figure 1 (right), Alice’s “Found it!” message causally precedes Bob’s “Glad to hear
it!” message, and therefore Carol, who delivers both messages, must deliver Alice’s message first

for the execution to observe causal delivery.

2.2 Background: Causal Broadcast Protocol

The causal broadcast protocol that we implemented and verified is due to Birman et al. [1991];
in this section, we describe how it works at a high level before diving into our Liquid Haskell
implementation in Section 3.

The protocol is based on vector clocks, a type of logical clock well-known in the distributed
systems literature [Fidge 1988; Mattern 1989; Schmuck 1988]. Like other logical clocks, vector
clocks do not track physical time (which would be problematic in distributed computations that
lack a global physical clock), but instead track the order of events. Readers already familiar with
vector clocks may skip ahead to Section 2.2.2.

2.2.1 Vector Clock Protocol. A vector clock is a sequence of length N (the number of processes in
the system), which is indexed by process identifiers i : 1..N, and where each entry is a natural
number. At the beginning of an execution every process p initializes its own vector clock, denoted
VC(p), to zeroes. The protocol proceeds as follows:

e When a process p; broadcasts a message m, p; increments its own position in its vector clock,
VC(p,)[l], by 1.

e Each message broadcast by a process p carries as metadata the value of VC(p) that was
current at the time the message was broadcast (just after incrementing), denoted VC(m).

e When a process p delivers a message m, p updates its own vector clock VC(p) to the pointwise
maximum of VC(m) and VC(p) by taking the maximum of the two integers at each index:
for k : 1..N, we update VC(p)[k] to max(VC(m)[k|, VC(p)[k]).

Figure 2 illustrates an example execution of three processes running the vector clock protocol.
We can define a partial order on vector clocks of the same length as follows: for two vector
clocks a and b indexed by i : 1..N,

® a <, bifVi.q|i] < bli], and

e a<y,: bifa<,. banda+ b.

This ordering is not total: for example, in Figure 2, m; carries a vector clock of [1,0,0] while ms
carries a vector clock of [0, 0, 1], and neither is less than the other. Correspondingly, m; and mgs are

ss Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

[0,0,0] [0,0,0] [0,0,0]
[1,0,0]
[

[0,0,1]
b

[1,1,1]

®
[1,1,1]

[]
[1,1,1]

Fig. 2. An example execution using the vector clock protocol. As each process broadcasts and delivers mes-
sages, it updates its vector clock according to the protocol. For example, when process p1 broadcasts my, it
increments its own position in its clock immediately before broadcasting the message, and m1 carries the
incremented clock [1,0,0] as metadata.

causally independent (or concurrent): neither message has a causal dependency on the other. On the
other hand, ms causally depends on m; which can be confirmed because m;’s vector clock [1,0,0]
is less than [1,1,0] carried by ma. In fact, vector clocks under this protocol precisely characterize
the causal partial ordering [Fidge 1988; Mattern 1989]: for all messages m, m’, it can be shown that

m—p, m' & VC(m) <y VC(m'). (1)

This powerful two-way implication lets us boil down the problem of reasoning about causal rela-
tionships between messages to the problem of comparing fixed-length vectors of integers.

By itself, the vector clock protocol does not enforce causal delivery of messages. Indeed, the
execution in Figure 2 violates causal delivery: under causal delivery, process ps would not deliver
mj before mo. However, the vector clock metadata attached to each message can be used to enforce
causal delivery of broadcast messages, as we will see next.

2.2.2 Deliverability. The vector clock attached to a message can be thought of as a summary of the
causal history of that message: for example, in Figure 2, mo’s vector clock of [1,1,0] expresses that
one message from p; (represented by the 1 in the first entry of the vector) causally precedes ms.
Furthermore, each process’s vector clock tracks how many messages it has delivered from each
process in the system (including itself, since self-sent messages are sent and delivered locally in
one atomic step). We can exploit this property by having the recipient of each broadcast message
compare the message’s attached vector clock with its own vector clock to check for deliverability,
as follows:

DEFINITION 3 (DELIVERABILITY [BIRMAN ET AL. 1991]). A message m broadcast by a process p; is
deliverable at a process p; # p; if, fork : 1..N,

VC(m)[k] = VC(p;)[k] + 1 ifk =i, and
VC(m)[k] < VC(p;)[k] otherwise.

Verified Causal Broadcast with Liquid Haskell),

Alice Bob Carol Alice Bob Carol
J [1,0,0]

>
[1,0,0]

S mfound buffered

. mglad buffered

]
[1,0,0]

1
[2,0,0]

J
[2,0,0] .
[2,1,0]

Fig. 3. The executions from Figure 1, annotated with vector clocks used by the causal broadcast protocol.
On the left, Carol buffers message mf,unqg, Which has a vector clock of [2,@,01], until she has received and
delivered my,g, which has a vector clock of [1,0,0]. On the right, Carol buffers message mgjq4, which has a
vector clock of [2,1,0], until she has received and delivered mfy,n4, which has a vector clock of [2,0,0].

Our notional “mail clerk” will use Definition 3’s deliverability condition to decide when to deliver
received messages. How it works is a bit subtle, but worth understanding because of the key role
it plays in the protocol (and in our implementation, as we will see in Section 3):

e The first clause of Definition 3 ensures that m is the recipient p;’s next expected message from
the sender, p;. The number of messages from p; that p; has already delivered will appear in
VC(p;) at index i, so VC(m)[i] should be exactly one greater than VC(p;)[i]. If VC(m)[i] is
more than one greater than VC(p;)[i], it means that there is at least one other message
m’ from p; that causally precedes m and that p; has not yet delivered, and so p; should not
deliver m while m’ remains undelivered. (The case where VC(m)[i] < VC(p;)]i] cannot occur,
because p; is always at least as up to date on its own sent messages as p; is.)

e The second clause ensures that m’s causal history does not include any messages sent by
processes other than p; that p; has not yet delivered. If m’s vector clock is greater than p;’s
vector clock in any position k # i, then it means that, before sending m, process p; must have
delivered some message m’ from py that has not yet been delivered at p;. By Definition 1,
we have broadcast(m’) —p;, deliver,, (m’), and because m’ was delivered at p; before m was
broadcast by p;, we have delivery,, (m’) —pp broadcast(m), and by transitivity of —p; we
have broadcast(m’) —pp, broadcast(m). Therefore m” —p; m, and so p; should not deliver m
while m’ remains undelivered.

Combining the vector clock protocol of Section 2.2.1 with the deliverability property of Defini-
tion 3 gives us Birman et al.’s causal broadcast protocol. Whenever a process receives a message, it
buffers the message until it is deliverable according to Definition 3. Each process stores messages
that need to be buffered in a process-local queue, the delay queue. Whenever a process delivers
a message and updates its own vector clock, it can check its delay queue for buffered messages
and deliver any messages that have become deliverable (which may in turn make other buffered
messages deliverable).

ss Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

2.2.3 Example Executions of the Causal Broadcast Protocol. To illustrate how the protocol works,
Figure 3 shows the two problematic executions we saw previously in Figure 1, but now with the
causal broadcast protocol in place to prevent violations of causal delivery. Each process keeps a
vector clock with three entries corresponding to Alice, Bob, and Carol respectively. Suppose that
Miost is Alice’s “Tlost my wallet..” message, Mfyunq is Alice’s “Found it!” message, and myqq is Bob’s
“Glad to hear it!” message.

In Figure 3 (left), Bob receives Alice’s messages in the order she broadcasted them, and so he can
deliver them immediately. For example, when Bob receives m,s, his own vector clock is [0,0,0],
and the vector clock on the message is [1,0,0]. The message is deliverable at Bob’s process because
it is one greater than Bob’s own vector clock in the sender’s (Alice’s) position, and less than or
equal to Bob’s vector clock in the other positions, so Bob delivers it immediately after receiving it.
Carol, on the other hand, receives mfnq first. This message has a vector clock of [2,0,01, so it is
not immediately deliverable at Carol’s process because Carol’s vector clock is [0,0,0], and so the
entry of 2 at the sender’s index is too large, indicating that the message is “from the future” and
needs to be buffered in Carol’s delay queue for later delivery, after Carol delivers m;qg.

In Figure 3 (right), Bob delivers two messages from Alice and then broadcasts mgjq. Mmgieq has
a vector clock of [2,1,0], indicating that it has two messages sent by Alice in its causal history.
When Carol receives mgjqq, her own vector clock is only [1,0,0], indicating that she has only
delivered one of those messages from Alice so far, so Carol must buffer mg,q in her delay queue
until she receives and delivers mfynq, the missing message from Alice, increasing her own vector
clock to [2,0,0]. Now myga is deliverable at Carol’s process, and Carol can deliver it, increasing
her own vector clock to [2,1,0].

2.3 Verification Task

Thanks to the relationship between the happens-before ordering and the vector clock ordering
expressed by Equation (1), we can reduce the problem of determining that a distributed execu-
tion observes causal delivery to a condition that is locally checkable at each process. We call this
condition process-local causal delivery:

DEFINITION 4 (PROCESS-LOCAL CAUSAL DELIVERY). A process p observes process-local causal de-
livery if; for all messages my and mo such that deliver,(m,) and deliver,(ms) are in hy,,

VC(my) <ye VC(mg) = deliver,(m1) —, deliver,(ma).

Our verification task will be to prove that our implementation of the causal broadcast protocol
of Section 2.2 ensures that processes that run the protocol observe process-local causal delivery:

THEOREM 1 (LocAL CORRECTNESS OF CAUSAL BROADCAST PROTOCOL). A process that runs the
causal broadcast protocol observes process-local causal delivery.

From Equation (1) and Theorem 1 we can immediately conclude that executions produced by a
distributed system of processes that run the causal broadcast protocol observe causal delivery.

THEOREM 2 (GLOBAL CORRECTNESS OF CAUSAL BROADCAST PROTOCOL). An execution in which
all processes run the causal broadcast protocol observes causal delivery.

PRrROOF. Let x be an execution in which all processes run the causal broadcast protocol. Let p be a
process in x and let m; and my be messages such that deliver, (m1) and deliver,(m3) are in h, and
m1 —pp my. By Equation (1), VC(my) <yc VC(mg3). Therefore, by Theorem 1, deliver,(m1) —,
deliver,(my), as required by Definition 2.]

Theorem 1 is the heart of our verification task. In the following sections, we show how we
use Liquid Haskell to implement and verify the causal broadcast protocol. After presenting the

Verified Causal Broadcast with Liquid Haskell),

protocol implementation in Section 3, in Section 4 we develop the machinery necessary to make
Theorem 1 precise, and then mechanically prove it using Liquid Haskell.

3 IMPLEMENTATION

In this section, we describe our implementation of Birman et al.’s causal broadcast protocol of
Section 2 as a Liquid Haskell library. After a brief overview of refinement types and Liquid Haskell
in Section 3.1, Section 3.2 describes the types used to implement our system model and vector clock
operations, and Section 3.3 describes our implementation of the protocol itself. Finally, Section 3.4
discusses how a user application would use our library.

3.1 Background: Refinement Types and Liquid Haskell

Refinement types [Rushby et al. 1998; Xi and Pfenning 1998] let programmers specify types aug-
mented with logical predicates, called refinement predicates, that restrict the set of values that can
inhabit a type. Depending on the expressivity of the predicate language, programmers can specify
rich properties using refinement types, sometimes at the expense of decidability of type check-
ing. Liquid Haskell avoids that problem by restricting refinement predicates to an SMT-decidable
logic [Rondon et al. 2008; Vazou et al. 2014]. For example, in Liquid Haskell we can define a refine-
ment type EvenInt = { v:Int | v mod 2 == @ }, where v mod 2 == @ is the refinement predicate
and v:Int binds the name v for values of type Int that appear in the refinement predicate. One
could define an analogous 0ddInt = { v:Int | v mod 2 == 1 } and a function for adding them:

oddAdd :: 0ddInt — 0ddInt — EvenInt
oddAdd x y = x + vy

The type 0ddInt of the arguments to oddAdd expresses the precondition that x and y will be odd,
and the return type EvenInt expresses the postcondition that x + y will evaluate to an even num-
ber. Liquid Haskell automatically proves that such postconditions hold by generating verification
conditions that are checked at compile time by the underlying SMT solver, Z3 [de Moura and
Bjerner 2008]. If the solver finds a verification condition to be invalid, typechecking fails. If the
return type of oddAdd had been 0ddInt, for instance, the above code would fail to typecheck.

Aside from preconditions and postconditions of individual functions, Liquid Haskell makes it
possible to verify extrinsic properties that are not specific to any particular function’s definition.
For example, the type of sum0dd below expresses the extrinsic property that the sum of an odd and
an even number is an odd number:

sumOdd :: x : 0ddInt — y : EvenInt — { _:Proof | (x + y) mod 2 == 3
sumOdd _ _ = ()

Here, sum0dd is a Haskell function that returns a proof that the sum of x and y is odd. (In Liquid
Haskell, Proof is a type alias for Haskell’s () (unit) type.) Because the proof of this particular
property is easy for the SMT solver to carry out automatically, the body of the sum0dd function
need not say anything but (). In general, however, programmers can specify arbitrary extrinsic
properties in refinement types, including properties that refer to arbitrary Haskell functions via the
notion of reflection [Vazou et al. 2017]. The programmer can then prove those extrinsic properties
by writing Haskell programs that inhabit those refinement types, using Liquid Haskell’s provided
proof combinators — with the help of the underlying SMT solver to simplify the construction of
these proofs-as-programs [Vazou et al. 2018, 2017].

Liquid Haskell thus occupies a position at the intersection of SMT-based program verifiers such
as Dafny [Leino 2010], and theorem provers that leverage the Curry-Howard correspondence such
as Coq [Bertot and Castran 2010] and Agda [Norell 2008]. A Liquid Haskell program can consist

Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

of both application code like oddAdd (which runs at execution time, as usual) and verification code
like sumodd (which is never run, but merely typechecked), but, pleasantly, both are just Haskell
programs, albeit annotated with refinement types. Since Liquid Haskell is based on Haskell, pro-
grammers can gradually port Haskell programs to Liquid Haskell, adding richer specifications to
code as they go. For instance, a programmer might begin with an implementation of oddAdd with
the type Int — Int — Int, later refine it to 0ddInt — 0ddInt — EvenInt, even later prove the
extrinsic property sumOdd, and still later use the proof returned by sum0dd as a premise to prove
another, more interesting extrinsic property.

3.2 System Model and Vector Clocks

We begin by defining types to implement our system model and vector clock operations. Process
identifiers are natural numbers and double as indexes into vector clocks, which are represented
by a list of natural numbers.

type PID = Nat

type VC = [Nat]

Messages have type M r, where the r parameter is the application-defined type of the raw mes-
sage content (e.g., a JSON-formatted string).

data M r = M { mvC :: VC, mSender :: PID, mRaw :: r }

A message has three fields: mvC and mSender are respectively the metadata that capture when the
message was sent (as a VC) and who sent it (as a PID), and mRaw contains the raw message content.

An event can be either a Broadcast (to the network) or a Deliver (to the local user application
for processing), and a process history H is a list of events.

data Event r = Broadcast (M r) | Deliver PID (M r)
type H r = [Event r]

To implement the vector clock protocol of Section 2.2.1, we need several standard operations on
vector clocks, with the below interface:

vcEmpty :: Nat — VC

veTick :: VC — PID — VC
vcCombine :: VC — VC — VC
vcLessEqual :: VC — VC — Bool
vclLess :: VC — VC — Bool

vcEmpty initializes a vector clock of a given size with zeroes, vcTick increments a vector clock at a
given index, vcCombine computes the pointwise maximum of two vector clocks, and vcLessEqual
and vclLess implement the vector clock ordering described in Section 2.2.1. As we will see in the fol-
lowing sections, our causal broadcast implementation uses vcTick and vcCombine when broadcast-
ing and delivering messages, respectively. The prose definitions of all these operations translate
directly into idiomatic Haskell; for example, the implementation of vcCombine is zipWith max.

So far, all of the types we have shown here seem to be standard Haskell types, but this is a bit of
a fib. In our actual implementation, additional Liquid Haskell refinements on VC and PID — elided
here for readability — ensure that all functions are called with compatible vector clocks (having the
same length) and PIDs (natural numbers smaller than the length of a vector clock).> Moreover, we
use Liquid Haskell to extrinsically prove that vcCombine is associative, commutative, idempotent,

5 Recall from Section 2.1 that we model a distributed system as a finite set of N processes. We want our implementation
to be agnostic to N, yet we need to know what N is because it determines the length of vector clocks (and hence what
constitutes a valid index into a vector clock). We accomplish this in Liquid Haskell by parameterizing types with an N

10

Verified Causal Broadcast with Liquid Haskell),

and inflationary, and that vclLess is a strict partial order (i.e., irreflexive, asymmetric, and transitive).
These extrinsic proofs are carried out by induction on the structure of vector clocks.

3.3 Causal Broadcast Protocol Implementation

We express the causal broadcast protocol of Section 2.2 as a state transition system.

3.3.1 Process Type. The state data structure P r represents a process and is parameterized by the
type of raw content, r:

data P r = P { pvC :: VC, pID :: PID, pDQ :: [M r]
, pHist :: { h:H r | histvC h == pVC } }

The fields of P include the local vector clock pVC, the local process identifier pID, a delay queue of
received but not-yet-delivered messages pDQ, and (importantly for our verification task) the process
history pHist. We provide a pEmpty :: Nat — PID — P r function that initializes a process with
a vector clock of the given length containing zeroes, the given process identifier, and an empty
delay queue and empty process history.

The type of the process history pHist deserves further discussion, as it is our first use of a
Liquid Haskell feature called datatype refinements. The datatype refinement on the pHist field says
that it contains a history h of the type H r defined in the previous section, but with an additional
constraint histVC h == pVC. This constraint expresses the intuition that the vector clock pvC and
the history h “agree” with each other: for any process p starting with a pVC containing all zeros and
an empty pHist, each addition of aDeliver (pID p) mevent to the history for some message m must
coincide with an update to pvC p of the form vcCombine (mVC m) (pVC p). Accordingly, histVC his
defined as the supremum of vector clocks on Deliver events in h. We extrinsically prove in Liquid
Haskell that this pvC-pHist agreement property is true of the empty process and preserved by each
transition in our state transition system, but since the proofs are relatively uninteresting we do
not include them. We next describe these transition functions.

3.3.2 State Transitions. The transition functions are receive, deliver, and broadcast, with the
following interface:

receive :: Mr - Pr —- Pr
deliver :: P r — Maybe (M r, P r)
broadcast :: r - P r - (Mr, P r)

The receive function adds a message from the network to the delay queue, the deliver function
pops a deliverable message (if any) from the delay queue, and the broadcast function prepares raw
content of type r for broadcast by wrapping it in a message. Of these transition functions, only
deliver and broadcast are particularly interesting from the perspective of our verification effort,
since receive only adds messages to the delay queue and cannot affect whether causal delivery is
violated. We next dive into the implementation of deliver and broadcast, respectively.

3.3.3 Deliver. Figure 4 shows the implementation of deliver, as well as its constituents dequeue,
deliverable, and deliverableHelper. At a high level, deliver calls dequeue on a process’s delay
queue and then performs bookkeeping: If dequeue popped a deliverable message, then deliver
returns that message and updates the process with a new vector clock according to the vector clock
protocol, the new delay queue returned by dequeue, and a new process history which records the
delivery of the message. The dequeue function plays its part by removing and returning the first
deliverable message found in the delay queue.

expression value which will be provided at initialization by application code. For readability, we elide these length-indexing
parameters from types in this paper, although they are ubiquitous in our implementation.

11

Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

deliver :: P r — Maybe (M r, P r)
deliver p =
case dequeue (pVC p) (pDQ p) of
Nothing — Nothing
Just (m, pDQ') —
Just (m, p{ pVC = vcCombine (mVC m) (pVC p)
, pDQ = pDQ'
, pHist = Deliver (pID p) m : pHist p })

dequeue :: VC — DQ r — Maybe (M r, DQ r)
dequeue _now [] = Nothing
dequeue now (x:xs)
| deliverable x now = Just (x, xs)
| otherwise = case dequeue now xs of -- Skip past x.
Nothing — Nothing
Just (m, xs') — Just (m, x:xs')

deliverable :: M r — VC — Bool
deliverable m p_vc = let n = length p_vc in

and (zipWith3 (deliverableHelper (mSender m)) (finAsc n) (mVC m)

p_vc)

deliverableHelper :: PID — PID — Clock — Clock — Bool
deliverableHelper m_id k m_vc_k p_vc_k

| k == m_id = m_vc_k == p_vc_k + 1

| otherwise = m_vc_k <= p_vc_k
finAsc :: n:Nat —

{ xs:[{x:Nat | x < n}I<{\a b —- a < b}> | len xs == n }

Fig. 4. Implementation of deliver and its helpers.

Most importantly, the deliverable predicate implements the deliverability condition of Defini-

tion 3 to check whether a message mis deliverable at time p_vc. It works by calling deliverableHelper
(mSender m) on each offset in the message vector clock mvC m and process vector clock p_vc, and

returning the conjunction of those results. The function finAsc n provides those offsets in ascend-
ing order, and, combined with zipWith, lets us implement the subtle deliverability condition of
Definition 3 in deliverableHelper, almost exactly as Definition 3 is written (except that our vector
clocks are zero-indexed). We omit the implementation of finAsc from Figure 4 for brevity, but its
refinement type guarantees that it returns an ascending list of length n containing natural numbers
less than n, using Liquid Haskell’s abstract refinements feature [Vazou et al. 2013].

As an illustrative example of the behavior of the deliverable predicate, consider calling it on
a message sent by mSender m == 1 with vector clock mvC m == [0,2,2], at a process with vector
clock p_vc == [1,1,0]. Since the vector clocks have length 3, the call to finAsc n in deliverable
would evaluate to [0, 1,2], and so the function body of deliverable would be equivalent to

and (zipWith3 (deliverableHelper 1) [0,1,2] [0,2,2] [1,1,0])

12

Verified Causal Broadcast with Liquid Haskell),

broadcast :: r - P r — (Mr, Pr)
broadcast raw p =
let m = M { mVC = vcTick (pVC p) (pID p)
, mSender = pID p
, mRaw = raw }
p' =p { pDQ = m : pDQ p
, pHist = Broadcast m : pHist p }
Just tup = deliver p'
in tup

Fig. 5. Implementation of broadcast. We prove that deliver p' is a Just value using an extrinsic proof.

which expands to

and [deliverableHelper 1 0 0 1 -- 1 /= 0 && 0 <= 1 == True
, deliverableHelper 1 1 2 1 -- 1 == 1 && 2 == 1 + 1 == True
, deliverableHelper 1 2 2 0 -- 1 /= 2 && 2 <= 0 == False

]

In each call to deliverableHelper, the first argument is mSender m and the next three arguments
are elements drawn from finAsc n, mvC m, and p_vc (such that finAsc n provides the k indexes). In
the first call, mSender m is not k, so the message clock @ must be less-than or equal-to the process
clock 1 (which it is). In the second call, mSender m is k, so the message clock 2 must be equal-to the
process clock 1 plus one (which it is). Finally, in the last call, mSender mis not k, and so the message
clock 2 must be less-than or equal-to the process clock @ (which it is not). Therefore, the message
m is not deliverable and must remain in the delay queue for now. It will only become deliverable
once two messages from the node with process identifier 2 have been delivered.

3.3.4 Broadcast. Figure 5 shows the implementation of the broadcast function. First, broadcast
constructs a message m for the value raw by incrementing the pID pindex of its own vector clock pvC
p, and attaching that pID p to m as mSender. Next, broadcast constructs an intermediate process
value p' containing m at the head of the delay queue and a new process history recording the
broadcast event for this message. Last, broadcast delegates to deliver to deliver m at its own sender,
p'. As we will see in Section 4, implementing broadcast in terms of deliver simplifies proving
properties about our implementation, because a proof about broadcast can often delegate to an
existing proof about deliver.
A final thing to note is that although deliver’s return type is Maybe (M r, P r), the deliver
p' call in broadcast is guaranteed by Liquid Haskell to evaluate to a Just value containing the
next process and the message that was generated for broadcast. We prove this property using an
extrinsic proof, not shown here. The intuition is that messages a process sends to itself are always
immediately deliverable. When a process increments its own index in the vector clock that it places
in a message, the message immediately becomes deliverable at that process.

3.4 Example Application Architecture

The receive, deliver, and broadcast functions are the interface made available to user applications
of our causal broadcast library. When deliver returns a message, the user application must process
it immediately. The user application must also immediately put the message returned by broadcast

13

’s Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

Client Node Node e

Client

Process

Application broadcast p1D P1D ne

[Logic A
X pHist [Event] ﬁ%pslégagtéon

; > Node O
N — AN Clent
Application pDQ [Message] transport < -
State deliver receive -
deliverable?
pvC Ve
odeé“

Fig. 6. Example architecture for a distributed application using our causal broadcast library. The mnemonic
standins Process, Event, and Message refer to the types P r, Event r, and M r defined in our implemen-
tation. An application node using this architecture participates in the causal broadcast protocol using a sin-
gle process data structure and the functions receive, broadcast, and deliver to safely manage message-
passing state. Clients make requests to a node, possibly updating application state, and the node may gen-
erate messages to replicate updates or perform other tasks. The paths of

, and blue-purple arrows show the paths of inbound messages.

R % Gien

Client

on the network and also process the message locally.® This design implies that user applications
should not update their own state directly when communication is in order, but rather, generate a
message and then update their state in response to its delivery.

Figure 6 shows an example architecture of an application using our causal broadcast library. A
collection of (potentially geo-distributed) peer nodes, which we call the causal broadcast cluster,
each run the causal broadcast protocol along with their user application code (for instance, a key-
value store or a group chat application). Clients of the application communicate their requests to
the nodes; one or more clients may communicate with each node. The application instance on a
node generates messages, broadcasts them to other nodes, and delivers messages received from
other nodes. Later on, in Section 5, we will see a case study of an application with this architecture.

4 VERIFICATION

In this section we mechanize process-local causal delivery (Definition 4) for our implementation
of the causal broadcast protocol and describe the highlights of our Liquid Haskell proof develop-
ment showing that our implementation satisfies Theorem 1. In Section 4.1 we define process-local
causal delivery (abbreviated “PLCD” henceforth) in Liquid Haskell, and in Section 4.2 we show that
PLCD holds for our implementation (Theorem 1) by showing that each of the receive, deliver, and
broadcast transitions of Section 3.3 results in a process that observes PLCD. Finally, in Section 4.3
we briefly discuss the liveness of our implementation.

4.1 Process-Local Causal Delivery as a Refinement Type

We define PLCD (Definition 4) as a refinement type in Liquid Haskell and explain the components
of its definition.

®In practical applications, it may be advantageous to separate these concerns about handling return values into an addi-
tional message-handling layer, but that is beyond our scope.

14

Verified Causal Broadcast with Liquid Haskell),

type ProcesslLocalCausalDelivery r ID HIST
= {ml : Mr | elem (Deliver ID ml) HIST }
— {m2 : M r | elem (Deliver ID m2) HIST
&& vclLess (mVC m1) (mVC m2) }
— { _:Proof | processOrder HIST (Deliver ID ml1) (Deliver ID m2) }

The type alias ProcessLocalCausalDelivery r ID HIST fixes a process identifier ID and a process
history HIST.” It is the type of a function that given messages m1 and m2, both of which have already
been delivered in the specified process history and for which the vector clock of m1 is less than
that of m2, produces a proof that the delivery event of m1 precedes the delivery event of m2 in the
process history. The vcLess function is part of the vector clock interface described in Section 3.2.

We explain processOrder next. Recall from Section 2.1 that ey —, e; means that e; precedes es in
the process history h,. In our implementation, a process history is a list of events (Section 3.2), and
the broadcast (Figure 5) and deliver (Figure 4) functions modify the process history by consing a
new Broadcast or Deliver event, respectively, to the left of the existing process history. Therefore,
for any process history e:h, h is the list of events that precede e. We can therefore define the
predicate processOrder h e e' that returns True if e is present in the list of events that precede e’
in h as follows:

processOrder :: Eq r => H r — Event r — Event r — Bool
processOrder hist e e' = elem e (tailForHead e' hist)
tailForHead :: Eq a => a — [a]l — [al]

tailForHead _ [] = []

tailForHead e (x:xs) = if e==x then xs else tailForHead e xs

We extrinsically proved that processOrder is a strict total order under the assumption that the
events in a process history are distinct.

4.2 Proving Local Correctness of the Causal Broadcast Protocol

To mechanize Theorem 1 and its proof in Liquid Haskell, we first need to make precise what The-
orem 1 means by “a process that runs the causal broadcast protocol” Recall the state transition
system consisting of the process type P r and the functions receive, deliver, and broadcast dis-
cussed in Section 3.3. We need to prove (1) that a process satisfies PLCD in its initial, empty state
returned by pEmpty, and (2) that whenever a process satisfying PLCD transitions to a new state
via any sequence of steps of the receive, deliver, or broadcast transition functions, the resulting
process state still satisfies PLCD. Most of the action of our proof development happens in handling
deliver steps, as we will see below in Section 4.2.3.

A proof that the empty process observes PLCD as defined in Section 4.1 is trivially discharged
by Liquid Haskell, and so we do not include it here. We turn our attention to proving that each of
the state transitions preserves PLCD. To use the ProcessLocalCausalDelivery type alias with the
process type, P r, we need a small adapter to extract the corresponding fields, PLCD. The type alias
PLCD r PROC takes a process value P r and returns the same theorem as seen in Section 4.1.3

type PLCD r PROC = ProcessLocalCausalDelivery r {pID PROC} {pHist PROC}
7 In Liquid Haskell, type aliases can be parameterized either with ordinary Haskell type variables or with Liquid Haskell
expression variables. In the latter case, the parameter is written in ALL CAPS.

8 When instantiating a Liquid Haskell type alias parameterized by expression variables, the expressions are wrapped with
braces to distinguish them from type parameters.

15

’s Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

To encode the inputs to each of the causal broadcast protocol transition functions, we define
a sum type over the arguments, Op r. Each function takes a P r input and additional arguments
corresponding to one of the Op r constructors.

data Op r = OpReceive (M r) | OpDeliver | OpBroadcast r

To apply those transition functions to a process value, we define step. It branches on the construc-
tor of Op r, calls a transition function discussed in Section 3.3, extracts the next process value, and
throws away information unneeded for the proof.

step :: Opr - P r — P r

step (OpReceive m) p = receive m p

step (OpBroadcast r) p = case broadcast r p of (_, p') — p'
step (OpDeliver) p = case deliver p of Just (_, p') — p'

Nothing - p

4.2.1 Theorem 1 as a Refinement Type. With Op and step in place, we can now state and prove
Theorem 1. We state the theorem as follows:

trcPLCDpres :: ops : [Op r]
— p: Por
— PLCD r {p}
— PLCD r {foldr step p ops}

The trcPLCDpres property says that for every list of operations, ops, and every process, p, if p ob-
serves PLCD, then after applying the operations, the resulting p still observes PLCD. The third
argument, PLCD r {p}, is a proof that PLCD holds for the starting process, p, and the result, PLCD r

{foldr step p ops}, is a proof that PLCD still holds after folding the step function over elements
of ops (assuming a standard definition for foldr, the right-associative list reduction) and accu-
mulating the results onto p. Therefore trcPLCDpres ensures that the transitive-reflexive closure of
step preserves PLCD (hence the “trc” in its name). Since the P r process type and the receive,
deliver, and broadcast functions comprise the API provided to users of our causal broadcast li-
brary, trcPLCDpres says that any sequence of receive, deliver, and broadcast calls that a user
might make will result in a PLCD-observing process. In particular, regardless of when the user
calls deliver, messages from the network will never be delivered to the user application in an
order that violates causality.

4.2.2 Proof of trcPLCDpres. The proof of trcPLCDpres proceeds by induction on the list of opera-
tions applied to the process.

trcPLCDpres [1 p pPLCD
trcPLCDpres (op:ops) p pPLCD
let prev = foldr step p ops
prevPLCD = trcPLCDpres ops p pPLCD
in stepPLCDpres op prev prevPLCD
? (foldr step p (op:ops) === step op (foldr step p ops))

pPLCD ? (foldr step p []1 === p)

There are two cases: a base case and an inductive case. Both cases return partially applied proof
functions which themselves take two message arguments and produce appropriate evidence about
processOrder.9

9 Both cases of trcPLCDpres use the ? and === operators provided by Liquid Haskell. In Liquid Haskell, x ? p returns

X, and adds the information produced by p to the SMT logic to help with reasoning. Additionally, === is used to explicitly
verify equalities and add them to the SMT logic.

16

Verified Causal Broadcast with Liquid Haskell

In the base case, the operations list is []. The input proof pPLCD is sufficient to show that PLCD
holds after the fold, because the fold leaves p unchanged. In the inductive case, the operations list
is op:ops. The inductive assumption (named prevPLCD) is that trcPLCDpres holds for the process
(named prev) obtained by applying the tail of operations, ops, to p. With the inductive assumption,
what remains is to show that applying a single operation to prev obtains a process for which
trcPLCDpres holds. For that step we define a lemma, stepPLCDpres. The stepPLCDpres property
states that for a single operation op, and process p, if PLCD holds for p, then it still holds after
applying op using step:

stepPLCDpres :: op : Op r

- p : Pr
— PLCD r {p}
— PLCD r {step op p}

The proof of stepPLCDpres branches on the constructors for op, followed by delegation to three
lemmas about each of the transition functions.

stepPLCDpres op p pPLCD =

case op ? step op p of
OpReceive m — receivePLCDpres m p pPLCD
OpDeliver — deliverPLCDpres p pPLCD
OpBroadcast r — broadcastPLCDpres r p pPLCD

The most involved of these three lemmas is deliverPLCDpres, the one that deals with deliver
steps. Proving receivePLCDpres is straightforward because calling receive does not modify the
process history, and so if a process observes PLCD before calling receive, then it still does af-
terward. Likewise, proving broadcastPLCDpres is straightforward because calling broadcast only
adds a Broadcast event to the process history (and then calls deliver), and so if a process observes
PLCD before calling broadcast, then it still does after adding the event (and for calling deliver to
deliver the message locally, we can delegate to deliverPLCDpres). We therefore omit discussion of
receivePLCDpres and broadcastPLCDpres and dig more deeply into the proof of deliverPLCDpres in
the next section.

4.2.3 Deliver Transition Preservation Lemma. The deliverPLCDpres lemma states that a process’s
observation of PLCD is preserved through calls to the deliver function. It is defined with the help
of a dShim function that returns the new process after delivering a message, or returns the original
process when no delivery occurs.

deliverPLCDpres :: p : P r — PLCD r {p} — PLCD r {dShim p}
dShim :: P r — P r
dShim p = case deliver p of Nothing - p

Just (-, p') — p'
Here is the proof of deliverPLCDpres, which we explain below:

deliverPLCDpres p pPLCD ml m2 =

case dequeue (pVC p) (pDQ p) of -- by cases of deliver
Nothing — pPLCD m1 m2 -- p is unchanged
Just (m, _pDQ"') -- p delivered m and became (dShim p)
| m == ml — dPLCDpres1 p pPLCD (dShim p) ml m2
| m == m2 — dPLCDpres2 p pPLCD (dShim p) ml m2
| m /= ml & m /= m2 — dPLCDpres3 p pPLCD (dShim p) ml m2 m

17

’s Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

The proof begins by deconstructing the two cases of dequeue, echoing the definition of deliver
(Figure 4). In the case that dequeue returns Nothing, so does its caller deliver, and dShim returns p
unchanged. This line of reasoning is automatically carried out by Liquid Haskell without needing
to be explicitly written in the proof. As a result, we can use the input evidence that p observes
PLCD (named pPLCD) to complete the case.

In the case that dequeue returns Just (m, _pDQ') because deliverable m (pVC p) was True, we
concern ourselves with the to-be-delivered message m. At this point, we know that m will be deliv-
ered, and our task remains to show of the resulting process, dshim p, that for all messages m1 and
m2, the delivery of m1 occurs in the subsequence of pHist (dShim p) that precedes m2. The proof
now proceeds by cases!® on m, and calls off to yet more helper lemmas for each case. While we
elide the code for these helper lemmas dPLCDpres1, dPLCDpres2, and dPLCDpres3, we discuss them
each at a high level. We refer to dshim p as p' for brevity in the below discussion.

e Case m == m1. When m is equal to m1, it is the most recently delivered message in p', but
since vcLess (mVC m1) (mVC m2), this would be a causal violation, and so we show this case
is impossible. Recall, in this case deliverable m (pVC p) returned True, which implies a rela-
tionship between mvC mand pVC p: The mSender m offset in mvC m is exactly one greater than
that of pvVC p, and all other offsets of mVC m are less than or equal to that of pvC p. Addition-
ally vcLessEqual (mVC m1) (mVC m2) by vcLess, and also vcLessEqual (mVC m2) (histVC p)
because the delivery of m2 is in pHist p and because vcCombine is inflationary, and lastly
histVC p == pVC p by the data refinement on processes. Finally, since vcLessEqual is tran-
sitive we can combine these facts to conclude that vcLessEqual (mVC m1) (pVC p), which
contradicts the relationship implied by deliverable m (pVC p).

e Casem == m2. When m is equal to m2, it is the most recently delivered message in p'. Let e1
be the delivery event for m1 with the definition Deliver (pID p') m1 and similarly let e2 be
the delivery event for the equivalent messages m2 and m. Since pHist p' is e2:pHist p,and el
is known to already be in pHist p, we can conclude elem el (tailForHead e2 (pHist p')),
letting us conclude that processOrder (pHist p') el e2, as required.

e Casem /= ml & m /= m2. Finally, when m is a new message distinct from both m1 and m2,
we show that the addition of a deliver event for m to pHist p does not change the delivery
ordering of m1 and m2. That is, with event e1 for delivery of m1, e2 for m2, and e3 for m, since
pHist p' is e3:pHist p, and since e1 and e2 were in pHist p (and both are still in pHist p'),
we can conclude that orderings about elements in pHist p are unchanged in pHist p'.

With these pieces in place, we can conclude that a PLCD-observing process continues to observe
PLCD after any call to deliver.

To recap the proof development described in the last few sections. First, in Section 4.1 we ex-
pressed process-local causal delivery (Definition 4) as a refinement type. Next, in Section 4.2.1
we defined the property trcPLCDpres, which says that a PLCD-observing process continues to ob-
serve PLCD after any sequence of receive, deliver, and broadcast calls, making precise the claim
of Theorem 1 that a process that runs the causal broadcast protocol observes PLCD. Finally, in
Section 4.2.2 and Section 4.2.3 we discuss the proof of trcPLCDpres, with, unsurprisingly, most of
our attention going toward deliver calls. Table 1 summarizes the size of our proof development
in terms of lines of Liquid Haskell code.

19 m1 and m2 must be distinct messages because of ProcessLocalCausalDelivery’s premise that vcLess (mVC
m1) (mVC m2). Therefore the proof of deliverPLCDpres does not need an m1 == m2 case because Liquid Haskell
automatically proves that it is not possible.

18

Verified Causal Broadcast with Liquid Haskell

Description LOC
Basic property definitions 25
Properties of process histories 89
Properties of vector clock operations (Section 3.2) 137
pVC-pHist agreement (Section 3.3.1) 44
Guaranteed deliverability of self-sent messages (Section 3.3.3) 106
ProcessLocalCausalDelivery definition; properties of processOrder (Section 4.1) 31
Definitions used in *PLCDpres lemmas 42
trcPLCDpres, stepPLCDpres, and state transition system definitions (Section 4.2) 63
receivePLCDpres 28
broadcastPLCDpres 54
deliverPLCDpres and helpers (Section 4.2.3) 163
Further helper lemmas about deliver and deliverable 167

Table 1. Lines of code used in our proof development. The LOC column includes lines of Liquid Haskell
definitions, theorems, proofs, and other annotations.

4.3 Discussion: Liveness

The trcPLCDpres property means that messages from the network are never delivered to the user
application in an order that violates causality. Somewhat distressingly, however, this safety prop-
erty is not particularly useful on its own, because it would also be true of an implementation in
which no messages are ever delivered! A useful implementation is not only safe, but live, which
in our case would mean that messages will not languish forever in the delay queue. As mentioned
in Section 2.1, for our safety result we need not make any assumption of reliable message receipt,
since we do not have to worry about the delivery order of messages that are never received. A
proof of liveness, though, would need to rest on the assumption of a reliable message transport
layer, that is, one in which sent messages are eventually received — albeit in arbitrary order and
with arbitrarily long latency. Otherwise, a message could be stuck forever in the delay queue if
a message that causally precedes it is lost, because it would never become deliverable. Proofs of
liveness properties are considered “much harder” [Hawblitzel et al. 2015] than proofs of safety
properties. While we do not offer any mechanized liveness proof, in the following case study
section, we argue informally for the liveness of our implementation under the reliable message
reception assumption.

5 CASE STUDY

In this section we describe a key-value store (KVS) application implemented in the architectural
pattern depicted by Figure 6 which uses our causal broadcast library from Section 3. The KVS is
an in-memory replicated data store consisting of message-passing nodes, each of which simulta-
neously serves client requests via HT'TP. Section 5.1 covers the implementation of the KVS and
demonstrates that it is not difficult to integrate our causal broadcast protocol with an application to
obtain the benefits of causal broadcast. In particular, causal broadcast can be used to ensure causal

19

’s Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

consistency of replicated data [Ahamad et al. 1995; Lloyd et al. 2011].1! In Section 5.2 we describe
how we deployed the KVS to a cluster of geo-distributed nodes and evaluated its performance.

5.1 Design and Implementation

We implemented the KVS using several commonly used Haskell libraries, such as servant to ex-
press HTTP endpoints concisely as types, stm to express multithreaded access to state, ekg to
gather runtime statistics, and aeson to provide JSON (de)serialization. Clients may request to PUT
a value at a key, DELETE a key-value pair specified by key, or GET the value corresponding to a
specified key. Servers directly POST messages to each other to implement broadcast.

When a client requests to modify application state via PUT or DELETE, the server generates a
KvCommand value to represent the update, where KvCommand is defined as follows:

type Key = String
type Val = Aeson.Value
data KvCommand = KvPut Key Val | KvDel Key

Each server has application state represented by a Haskell Map, and causal broadcast process state
(P r) where the type of raw message content is KvCommand, as defined by the following aliases:

type KvState = Map Key Val
type NodeState = P KvCommand

With Figure 6 as a guide, we explain the KVS architecture as follows:

e Client requests to the PUT or DELETE endpoints call broadcast on the NodeState and the
KvCommand value (represented by the in
Figure 6) to generate a message of type M KvCommand and then (as required by broadcast)
immediately apply the message to KvState before writing it to outbound queues for each
other node. Since both KvState and the outbound queues are held in stm references, other
threads waiting on the references wake up in response.

e The send mail background threads (represented by the

in Figure 6) wake up when any outbound queue is written to
and coalesce multiple M KvCommand messages into a POST request to the other nodes in the
causal broadcast cluster.

e Meanwhile, when a node makes a POST request with aM KvCommand value, the endpoint calls
receive (represented by the blue-purple arrow leaving “Application message transport” in
Figure 6) to inject the message into the delay queue within NodeState.

e Writing to NodeState wakes the read mail background thread which calls deliver (repre-
sented by the blue-purple arrow entering “Application state” in Figure 6), possibly removing
a message from the delay queue and applying it to KvState.

Since messages received via the POST endpoint are from other nodes, deliver will return Nothing
in cases where the causal dependencies of the message are not satisfied. Therefore all nodes (and
hence all clients of those nodes) observe the effects of causally-related KvCommands in the same
(causal) order. Were we to add indexing of values inserted with KvCommand and a richer query set to
take advantage of the indexing, our key-value store could be easily extended to provide real utility
in a production setting.

11 For simplicity, we adopt a “sticky sessions” model, in which a given client will only ever talk to a given server. In a
setting where clients can communicate with more than one server, clients would need to participate in the the propagation
of causal metadata generated by the servers [Lloyd et al. 2011], whereas with sticky sessions, causal metadata is only
exchanged among the servers.

20

Verified Causal Broadcast with Liquid Haskell),

5.2 Deployment and Evaluation

We deployed an eight-node KVS causal broadcast cluster, geo-distributed across AWS regions (two
nodes in us-west-1 (N. California), one in us-west-2 (Oregon), two in us-east-1 (N. Virginia), one
in ap-northeast-1 (Tokyo), two in eu-central-1 (Frankfurt)) and 24 client nodes with three clients
assigned to each KVS node. All the nodes were AWS EC2 t3.micro instances with 2 vCPUs at 2.5
GHz and 1 GiB of memory. The 50th-percentile inter-region ping latencies vary from about 20ms
between us-west-1 and us-west-2 to about 225ms between ap-northeast-1 and eu-central-1. Each
of the eight nodes in the cluster ran an instance of our KVS application compiled with GHC 8.10.7.

We conducted a simple experiment in which each of the 24 clients made 10,000 curl requests at
20 requests per second to their assigned KVS replica in the same region (for a total of 240,000 client
requests), uniformly distributed over GET, PUT, and DELETE requests. For PUT requests, we used
randomly generated JSON data for values, and ensured that there were key collisions, requiring
resolution by causal order, by drawing keys from among the lowercase ASCII characters. Using
this experimental setup, we sought empirical answers to two questions:

How fast does the KVS process requests? Two-thirds (160,000) of the 240,000 requests generated by
clients were PUT and DELETE requests. Each resulted in a broadcast from the client’s assigned KVS
replica to the seven other nodes in the cluster, generating 160,000 X 7 = 1,120,000 unicast messages
among the eight KVS nodes. To alleviate this message amplification and maintain throughput we
sent multiple unicast messages in each request; typically, two or three messages were sent at a
time. The KVS replicas handled all requests and delivered all messages in the time it took for
clients to send them (10 minutes) with a load average of 0.10, indicating that the cluster was not
CPU-bound and that no messages got stuck indefinitely in delay queues. As a static verification
approach, Liquid Haskell itself imposes no running time overhead compared to vanilla Haskell,
and no Liquid Haskell annotations were required in the KVS application code.

How often are messages queued for later delivery? We recorded the length of the delay queue
after each message delivery and maintained an average. Over all nodes, the average length of the
delay queue after a delivery came to 7.2 delayed messages. From prior experiments with a different
mix of KVS nodes and clients, we observe that having more nodes in the causal broadcast cluster
results in increased likelihood of messages being received out of causal order, motivating the need
for causal broadcast.

6 RELATED WORK

Machine-checked correctness proofs of executable distributed protocol implementations. Much work
on distributed systems verification has focused on specifying and verifying properties of models
using tools such as TLA+ [Lamport 2002], rather than of executable implementations. Here, our
focus is on mechanized verification of executable distributed protocol implementations.

Verdi [Wilcox et al. 2015] is a Coq framework for implementing distributed systems; verified
executable OCaml implementations can be extracted from Coq. IronFleet [Hawblitzel et al. 2015]
uses the Dafny verification language, which compiles both to verification conditions checked by
an SMT solver and to executable code. Both Verdi and IronFleet have been used to verify safety
properties (in particular, linearizability) of distributed consensus protocol implementations (Raft
and Multi-Paxos, respectively) and of strongly-consistent key-value store implementations, and
IronFleet additionally considers liveness properties. The ShadowDB project [Schiper et al. 2014]
uses a language called EventML that inverts the extraction workflow used in a proof assistant
like Coq or Isabelle: instead of first carrying out a proof in a proof assistant and then extracting
an executable implementation, the programmer writes code in EventML, which compiles both

21

ss Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

to a logical specification and to executable code that is automatically guaranteed to satisfy the
specification, and correctness properties of the logical specification can then be proved using the
Nuprl proof assistant. Schiper et al. [2014] used this workflow to verify the correctness of a Paxos-
based atomic broadcast protocol. None of Wilcox et al., Hawblitzel et al., or Schiper et al. looked
at causal broadcast or causal message ordering in particular.

Chapar [Lesani et al. 2016] presented a technique and Coq-based framework for mechanically
verifying the causal consistency of distributed key-value store (KVS) implementations, with exe-
cutable OCaml KVSes extracted from Coq. Lesani et al.’s verification approach effectively bakes
a notion of causal message delivery into an abstract causal operational semantics that specifies
how a causally consistent KVS should behave, then used the Chapar framework to check that a
KVS implementation satisfies that specification. More recently, Gondelman et al. [2021] used the
Cog-based Aneris separation logic framework [Krogh-Jespersen et al. 2020] to specify and verify
the causal consistency of a distributed KVS and further verify the correctness of a session manager
library implemented on top of the KVS. Both Lesani et al. and Gondelman et al. are specific to the
KVS use case, whereas our verified causal broadcast implementation factors out causal message
delivery into a separate layer, agnostic to the content of messages, that can be used as a standalone
component in a variety of applications. Our Liquid Haskell implementation is also immediately ex-
ecutable Haskell, simplifying integration of the verified library with (potentially unverified) user
application code, with no need for an extraction or compilation step, and Liquid Haskell’s SMT
automation somewhat simplifies the proof effort. Unlike Lesani et al. and Gondelman et al., we did
not attempt to verify the causal consistency of our KVS. However, we speculate that building on an
underlying verified causal messaging layer would simplify the KVS verification task by separating
lower-level message delivery concerns from higher-level application semantics.

Mechanized reasoning about causal consistency. One of the most important applications of causal
broadcast is keeping distributed replicas of data causally consistent [Ahamad et al. 1995; Lloyd et al.
2011] across a number of nodes. Out of dozens of possible data consistency policies [Viotti and
Vukoli¢ 2016], causal consistency represents an appealing “sweet spot” in the consistency/avail-
ability trade-off space, letting replica states diverge when necessary to preserve availability while
still ensuring that causal dependencies between operations are respected. Various SMT-powered
verification tools [Gotsman et al. 2016; Sivaramakrishnan et al. 2015] enable automatically verify-
ing that a given application invariant or operation contract holds under a given consistency policy,
including causal consistency. Rather than verifying that causal consistency itself is satisfied, these
approaches assume that the underlying data store provides a given consistency guarantee, and
then prove that application-level invariants are satisfied.

Causal broadcast for CRDT convergence. Conflict-free replicated data types (CRDTs) [Shapiro
et al. 2011a,b] are data structures designed for replication. Their operations must satisfy certain
mathematical properties that can be leveraged to ensure strong convergence [Shapiro et al. 2011b],
meaning that replicas are guaranteed to have equivalent state if they have received and applied the
same unordered set of updates. While the simplest CRDTs ask little of the underlying messaging
layer to ensure convergence, many CRDTs rely on causal delivery to ensure that, for example, a
message that updates or deletes an element of a set will not be delivered before the message that
inserts that element.

Gomes et al. [2017] use the Isabelle/HOL proof assistant [Wenzel et al. 2008] to implement and
verify the strong convergence of several CRDTs, including RGA. To carry out the proof, they bake
in causal delivery as an underlying assumption, modeled by the network axioms in their proof
development. Therefore, for strong convergence to hold for an actual deployed implementation
of Gomes et al.’s CRDTs, the deployment environment must provide causal delivery. Our work

22

Verified Causal Broadcast with Liquid Haskell

implements just such an environment, with its safety verified by Liquid Haskell. Thus our work is
complementary to Gomes et al.’s: one could extract and deploy their verified-convergent CRDTs
atop our verified-safe causal broadcast protocol to get an “end-to-end” convergence guarantee on
top of a weaker network model that offers no causal delivery guarantee itself.

Liu et al. [2020] use Liquid Haskell to verify the convergence of several operation-based CRDT
implementations. Their work differed from Gomes et al.’s in that it did not assume causal delivery,
and therefore required less of the deployment environment than Gomes et al.’s CRDTs; on the other
hand, it took a more strenuous implementation and verification effort, requiring on the order of
thousands of lines of Liquid Haskell proofs for the more sophisticated CRDTs. In fact, Liu et al.’s
verified two-phase map implementation included a “pending buffer” for updates that arrived out of
order, and a collection of ad hoc, data-structure-specific rules to determine which updates should
be buffered and which should be immediately applied. These mechanisms resemble the delay queue
and the deliverable predicate, but are specific to a particular application-level data structure and
use an ad hoc delivery policy, rather than operating at the messaging layer and using the more
general principle of causal delivery. We hypothesize that our library would lessen the need for
such ad hoc mechanisms and help simplify the implementation and verification of CRDTs.

Other applications of causal delivery. Aside from causally consistent data stores and conver-
gent CRDTs, causal delivery is useful for applications that must detect whether a stable prop-
erty [Chandy and Lamport 1985] holds of a distributed system. A stable property is a property
that, once becoming true, remains true for the rest of an execution; examples of stable property de-
tection include deadlock detection and termination detection. Causal delivery can simplify the im-
plementation of such algorithms [van Renesse 1993]. Not unrelatedly, some snapshot algorithms
for recording the global state of a distributed system [Acharya and Badrinath 1992; Alagar and
Venkatesan 1994] rely on causal delivery, which simplifies their implementation compared to snap-
shot algorithms for systems that lack causal delivery support [Kshemkalyani et al. 1995].

Foundational work on causal delivery. We implemented and mechanically verified the causal
broadcast protocol proposed by Birman et al. [1991]. The notion of causal delivery and a protocol
for causal broadcast was originally proposed by Birman and Joseph [1987b], although this earlier
design required messages to include a copy of every causally preceding message, necessitating a
garbage-collection mechanism to clean up extra message metadata. Schiper et al. [1989] proposed a
more general protocol that ensures causal delivery of point-to-point messages in addition to broad-
cast messages. All these papers give relatively informal proofs or proof sketches to aid intuition
about the correctness of their protocols.

7 CONCLUSION

Causal message broadcast is a widely used building block of distributed applications, motivating
the need for practically usable verified implementations. We have presented a verified executable
causal broadcast library implemented using Liquid Haskell, which enables proofs to be carried
out directly in Haskell, with no need for subsequent transformation or extraction steps. To verify
the correctness of our implementation, we define process-local causal delivery (PLCD), a property
that is locally checkable at each process. We identify design choices that make a standard causal
broadcast protocol amenable to verification of PLCD; and we mechanically verify that the PLCD
property holds for processes running our implementation of the protocol, resulting in what is to
our knowledge the first executable verified implementation of a causal broadcast protocol. Our
verified library is of immediate use in real distributed systems written in Haskell. We evaluated its
utility with a case-study application of a distributed in-memory key-value store.

23

’s Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

REFERENCES

Arup Acharya and B.R. Badrinath. 1992. Recording distributed snapshots based on causal order of message delivery. Inform.
Process. Lett. 44, 6 (1992), 317 — 321. https://doi.org/10.1016/0020-0190(92)90107-7

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal memory: definitions,
implementation, and programming. Distributed Computing 9, 1 (1995), 37-49. https://doi.org/10.1007/BF01784241

Sridhar Alagar and S. Venkatesan. 1994. An optimal algorithm for distributed snapshots with causal message ordering.
Inform. Process. Lett. 50, 6 (1994), 311 - 316. https://doi.org/10.1016/0020-0190(94)00055-7

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Induc-
tive Constructions (1st ed.). Springer Publishing Company, Incorporated.

K. Birman and T. Joseph. 1987a. Exploiting Virtual Synchrony in Distributed Systems. SIGOPS Oper. Syst. Rev. 21, 5 (Nov.
1987), 123-138. https://doi.org/10.1145/37499.37515

Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Lightweight Causal and Atomic Group Multicast. ACM Trans.
Comput. Syst. 9, 3 (Aug. 1991), 272-314. hitps://doi.org/10.1145/128738.128742

Kenneth P. Birman and Thomas A. Joseph. 1987b. Reliable Communication in the Presence of Failures. ACM Trans. Comput.
Syst. 5,1 (Jan. 1987), 47-76. https://doi.org/10.1145/7351.7478

Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On Verifying Causal Consistency. In Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). Association for
Computing Machinery, New York, NY, USA, 626-638. https://doi.org/10.1145/3009837.3009888

K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed Systems. ACM
Trans. Comput. Syst. 3, 1 (Feb. 1985), 63-75. https://doi.org/10.1145/214451.214456

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337-340.

C. J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial ordering. Proceedings of the 11th
Australian Computer Science Conference 10, 1 (1988), 56—66.

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford. 2017. Verifying Strong Eventual
Consistency in Distributed Systems. Proc. ACM Program. Lang. 1, OOPSLA, Article 109 (Oct. 2017), 28 pages. https:
//doi.org/10.1145/3133933

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars Birkedal. 2021. Distributed Causal
Memory: Modular Specification and Verification in Higher-Order Distributed Separation Logic. Proc. ACM Program.
Lang. 5, POPL, Article 42 (jan 2021), 29 pages. https://doi.org/10.1145/3434323

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I'm Strong Enough:
Reasoning about Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’16). Association for Computing Machinery, New York, NY,
USA, 371-384. https://doi.org/10.1145/2837614.2837625

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian
Zill. 2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP °15). Association for Computing Machinery, New York, NY, USA, 1-17. https://doi.org/10.1145/
2815400.2815428

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.
Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems,
Peter Miiller (Ed.). Springer International Publishing, Cham, 336-365.

Ajay D Kshemkalyani, Michel Raynal, and Mukesh Singhal. 1995. An introduction to snapshot algorithms in distributed
computing. Distributed systems engineering 2, 4 (1995), 224.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (July 1978),
558-565. https://doi.org/10.1145/359545.359563

Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-
Wesley Longman Publishing Co., Inc., USA.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Proceedings of the 16th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’10). Springer-Verlag, Berlin,
Heidelberg, 348-370.

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified Causally Consistent Distributed Key-Value
Stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 357-370. https://doi.org/10.1145/2837614.
2837622

Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou. 2020. Verifying Replicated Data
Types with Typeclass Refinements in Liquid Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 216 (Nov. 2020),

24

https://doi.org/10.1016/0020-0190(92)90107-7
https://doi.org/10.1007/BF01784241
https://doi.org/10.1016/0020-0190(94)00055-7
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3434323
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2837614.2837622

Verified Causal Broadcast with Liquid Haskell),

30 pages. https://doi.org/10.1145/3428284

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t Settle for Eventual: Scalable
Causal Consistency for Wide-Area Storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11). Association for Computing Machinery, New York, NY, USA, 401-416. https://doi.org/10.
1145/2043556.2043593

P. Mahajan, L. Alvisi, and M. Dahlin. 2011. Consistency, Availability, Convergence. Technical Report TR-11-22. Computer
Science Department, University of Texas at Austin.

Friedemann Mattern. 1989. Virtual Time and Global States of Distributed Systems. In Parallel and Distributed Algorithms.
North-Holland, 215-226.

UIf Norell. 2008. Dependently Typed Programming in Agda. In Proceedings of the 6th International Conference on Advanced
Functional Programming (AFP’08). Springer-Verlag, Berlin, Heidelberg, 230-266.

JonPostel. 1981. Transmission Control Protocol. STD 7. RFC Editor. http://www.rfc-editor.org/rfc/rfc793.txt http://www.rfc-
editor.org/rfc/rfc793.txt.

Michel Raynal, André Schiper, and Sam Toueg. 1991. The causal ordering abstraction and a simple way to implement it.
Inform. Process. Lett. 39, 6 (1991), 343-350. https://doi.org/10.1016/0020-0190(91)90008-6

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI "08). Association for Computing Machinery, New
York, NY, USA, 159-169. https://doi.org/10.1145/1375581.1375602

J. Rushby, S. Owre, and N. Shankar. 1998. Subtypes for specifications: predicate subtyping in PVS. IEEE Transactions on
Software Engineering 24, 9 (1998), 709-720. https://doi.org/10.1109/32.713327

André Schiper, Jorge Eggli, and Alain Sandoz. 1989. A New Algorithm to Implement Causal Ordering. In Proceedings of the
3rd International Workshop on Distributed Algorithms. Springer-Verlag, Berlin, Heidelberg, 219-232.

N. Schiper, V. Rahli, R. Van Renesse, M. Bickford, and R. L. Constable. 2014. Developing Correctly Replicated Databases
Using Formal Tools. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 395~
406. https://doi.org/10.1109/DSN.2014.45

Frank B Schmuck. 1988. The use of efficient broadcast protocols in asynchronous distributed systems. Ph.D. Dissertation.

Marc Shapiro, Nuno Preguiga, Carlos Baquero, and Marek Zawirski. 2011a. A comprehensive study of Convergent and
Commutative Replicated Data Types. Research Report RR-7506. Inria — Centre Paris-Rocquencourt ; INRIA. 50 pages.
https://hal.inria.fr/inria-00555588

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011b. Conflict-Free Replicated Data Types. In Proceed-
ings of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (SSS°11). Springer-
Verlag, Berlin, Heidelberg, 386-400.

KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consis-
tent Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 413-424. https://doi.org/10.1145/2737924.
2737981

Robbert van Renesse. 1993. Causal Controversy at Le Mont St.-Michel. SIGOPS Oper. Syst. Rev. 27, 2 (April 1993), 44-53.
https://doi.org/10.1145/155848.155857

Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. 2018. Theorem Proving for All:
Equational Reasoning in Liquid Haskell (Functional Pearl). In Proceedings of the 11th ACM SIGPLAN International
Symposium on Haskell (Haskell 2018). Association for Computing Machinery, New York, NY, USA, 132-144. https:
//doi.org/10.1145/3242744.3242756

Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In Programming Languages and Systems,
Matthias Felleisen and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 209-228.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2014. Refinement Types for Haskell.
In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). Association for
Computing Machinery, New York, NY, USA, 269-282. https://doi.org/10.1145/2628136.2628161

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and Ranjit Jhala.
2017. Refinement Reflection: Complete Verification with SMT. Proc. ACM Program. Lang. 2, POPL, Article 53 (Dec.
2017), 31 pages. https://doi.org/10.1145/3158141

Paolo Viotti and Marko Vukoli¢. 2016. Consistency in Non-Transactional Distributed Storage Systems. ACM Comput. Surv.
49, 1, Article 19 (June 2016), 34 pages. https://doi.org/10.1145/2926965

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. 2008. The Isabelle Framework. In Theorem Proving in Higher
Order Logics, Otmane Ait Mohamed, César Muiioz, and Sofiéne Tahar (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 33-38.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.
Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. In Proceedings of the 36th ACM

25

https://doi.org/10.1145/3428284
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1016/0020-0190(91)90008-6
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1109/32.713327
https://doi.org/10.1109/DSN.2014.45
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/155848.155857
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2926965

Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper

SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). Association for Computing Ma-
chinery, New York, NY, USA, 357-368. https://doi.org/10.1145/2737924.2737958

Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Checking through Dependent Types. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation (PLDI ’98). Association for
Computing Machinery, New York, NY, USA, 249-257. https://doi.org/10.1145/277650.277732

26

https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 System Model and Verification Task
	2.1 System Model
	2.2 Background: Causal Broadcast Protocol
	2.3 Verification Task

	3 Implementation
	3.1 Background: Refinement Types and Liquid Haskell
	3.2 System Model and Vector Clocks
	3.3 Causal Broadcast Protocol Implementation
	3.4 Example Application Architecture

	4 Verification
	4.1 Process-Local Causal Delivery as a Refinement Type
	4.2 Proving Local Correctness of the Causal Broadcast Protocol
	4.3 Discussion: Liveness

	5 Case study
	5.1 Design and Implementation
	5.2 Deployment and Evaluation

	6 Related Work
	7 Conclusion
	References

