Verified Causal Broadcast with Liquid Haskell

PATRICK REDMOND, University of California, Santa Cruz, USA
GAN SHEN, University of California, Santa Cruz, USA
NIKI VAZOU, IMDEA, Spain
LINDSEY KUPER, University of California, Santa Cruz, USA

Protocols to ensure that messages are delivered in causal order are a ubiquitous building block of distributed systems. For instance, key-value stores can use causally ordered message delivery to ensure causal consistency—a sweet spot in the availability/consistency trade-off space—and replicated data structures rely on the existence of an underlying causally-ordered messaging layer to ensure that geo-distributed replicas eventually converge to the same state. A causal delivery protocol ensures that when a message is delivered to a process, any causally preceding messages sent to the same process have already been delivered to it. While causal message delivery protocols are widely used in distributed systems, verification of the correctness of those protocols is less common, much less machine-checked proofs about executable implementations.

We implemented a standard causal broadcast protocol in Haskell and used the Liquid Haskell solver-aided verification system to express and mechanically prove that messages will never be delivered to a process in an order that violates causality. To do so, we express a process-local causal delivery property using refinement types, and we prove that it holds of our implementation using Liquid Haskell’s theorem-proving facilities, resulting in the first machine-checked proof of correctness of an executable causal broadcast implementation. We then put our verified causal broadcast implementation to work as the foundation of a distributed key-value store implemented in Haskell.

1 INTRODUCTION

Causal message delivery [Birman and Joseph 1987a; Birman et al. 1991; Birman and Joseph 1987b; Schiper et al. 1989] is a fundamental communication abstraction for distributed computations in which processes communicate by sending and receiving messages. One of the challenges of implementing distributed systems is the asynchrony of message delivery; messages arriving at the recipient in an unexpected order can cause confusion and bugs. A causal delivery protocol can ensure that, when a message \(m \) is delivered to a process \(p \), any message sent “before” \(m \) (in the sense of Lamport’s “happens-before”; see Section 2.1) will have already been delivered to \(p \). When a mechanism for causal message delivery is available, it simplifies the implementation of many important distributed algorithms, such as replicated data stores that must maintain causal consistency [Ahamad et al. 1995; Lloyd et al. 2011], conflict-free replicated data types [Shapiro et al. 2011b], distributed snapshot protocols [Acharya and Badrinath 1992; Alagar and Venkatesan 1994], and applications that “involve human interaction and consist of large numbers of communication endpoints” [van Renesse 1993]. A particularly useful special case of causal delivery is causal broadcast, in which each message is sent to all processes in the system. For example, a causal broadcast protocol enables a straightforward implementation strategy for a causally consistent replicated data store—one of the strongest consistency models available for applications that must maximize availability and tolerate network partitions [Mahajan et al. 2011]. Conflict-free replicated data types (CRDTs) implemented in the operation-based style [Gomes et al. 2017; Shapiro et al. 2011a,b] also assume the existence of an underlying causal broadcast layer to deliver updates to replicas [Shapiro et al. 2011b, §2.4].

What can go wrong in the absence of causal broadcast? Suppose Alice, Bob, and Carol are exchanging group text messages. Alice sends the message “I lost my wallet...” to the group, then finds the missing wallet between her couch cushions and follows up with a “Found it!” message to the group. In this situation, depicted in Figure 1 (left), Alice has a reasonable expectation that Bob and Carol will see the messages in the order that she sent them, and such first-in first-out (FIFO)
Fig. 1. Two executions that violate causal delivery (Definition 2). The vertical direction represents time, where later is lower; the horizontal direction represents space. Solid arrows represent messages between processes. On the left, Carol sees Alice’s messages in the opposite order of how they were sent. On the right, Carol sees Bob’s message before sees Alice’s second message. The dashed arrows in both examples depict how a causal delivery mechanism (Section 2.2) might delay the received messages in a buffer and deliver them later on, once doing so would not violate causal ordering.

delivery is an aspect of causal message ordering. While FIFO delivery is already enforced1 by standard networking protocols such as TCP [Postel 1981], it is not enough to eliminate all violations of causality. In an execution such as that in Figure 1 (right), FIFO delivery is observed, and yet Carol sees Bob’s message only after having seen Alice’s initial “I lost my wallet...” message, so from Carol’s perspective, Bob is being rude. The issue is that Bob’s “Glad to hear it!” response causally depends on Alice’s second message of “Found it!”, yet Carol sees “Glad to hear it!” first. What is called for is a mechanism that will ensure that, for every message that is applied at a process, all of the messages on which it causally depends — comprising its causal history — are applied at that process first, regardless of who sent them.

A causal broadcast protocol addresses the problem by buffering messages at the receiving end until all causally preceding broadcast messages have been applied. The dashed arrows in Figure 1 represent the behavior of such a buffering mechanism. A typical implementation strategy is to have the sender of a message augment the message with metadata (for instance, a vector clock; see Section 2.2.1) that summarizes that message’s causal history in a way that can be efficiently checked on the receiver’s end to determine whether the message needs to be buffered or can be applied immediately to the receiver’s state. Although such mechanisms are well-known in the distributed systems literature [Birman and Joseph 1987a; Birman et al. 1991; Birman and Joseph 1987b], their implementation is “generally very delicate and error prone” [Bouajjani et al. 2017], motivating the need for machine-verified implementations of causal delivery mechanisms that are usable in real, running code.

1TCP’s FIFO ordering guarantee applies so long as the messages in question are sent in the same TCP session. For cross-session guarantees, additional mechanisms are necessary.
To address this need, we use the Liquid Haskell platform to implement and verify the correctness of a well-known causal broadcast protocol [Birman et al. 1991]. Liquid Haskell is an extension to the Haskell programming language that adds support for refinement types [Rushby et al. 1998; Xi and Pfennig 1998], which let programmers specify logical predicates that restrict, or refine, the set of values described by a type. Beyond giving more precise types to individual functions, Liquid Haskell’s reflection [Vazou et al. 2018, 2017] facility lets programmers use refinement types to specify “extrinsic” properties (see Section 3.1) that can relate multiple functions, and then prove those properties by writing Haskell programs to inhabit the specified types. We use this theorem-proving capability to prove that in our causal broadcast implementation, processes deliver messages in causal order, ruling out the possibility of causality-violating executions like those in Figure 1.

Our causal broadcast implementation is a Haskell library that can be used in a variety of applications, including key-value stores, CRDTs, distributed snapshot algorithms, and peer-to-peer applications, and can be extended into a totally-ordered broadcast protocol that also preserves the causal order of messages [Birman et al. 1991]. While previous work has mechanically verified the correctness of applications of causal ordering in distributed systems (such as causally consistent distributed key-value stores [Gondelman et al. 2021; Lesani et al. 2016]), factoring the causal broadcast protocol out into its own standalone, verified component means that it can be reused in each of these contexts. There is a need for such a standalone component: for instance, recent work on mechanized verification of CRDT convergence [Gomes et al. 2017] assumes the existence of a correct causal broadcast mechanism for its convergence result to hold. Our separately-verified library could be plugged together with such verified CRDT implementations to get an end-to-end correctness guarantee. Therefore our library enables modular verification of higher-level properties for applications built on top of the causal broadcast layer. Finally, an advantage of Liquid Haskell as a verification platform is that it results in immediately executable Haskell code, with no extraction step necessary, as with proof assistants such as Coq [Bertot and Castran 2010] or Isabelle [Wenzel et al. 2008] — making it easy to integrate our library with existing Haskell code.

We make the following specific contributions:

- We identify process-local causal delivery, a property that allows us to reduce the problem of determining that a distributed execution observes causal delivery to one that can be verified using information locally available at each process (Section 2.3).
- We identify design choices that make a standard causal broadcast protocol amenable to verification. In particular, we implement the protocol in terms of a state transition system, and we implement message broadcast in terms of message delivery, leading to a simpler proof development (Section 3.3).
- We give a mechanized proof that our causal broadcast library implementation satisfies the process-local causal delivery property, which is, to our knowledge, the first machine-checked proof of correctness of an executable causal broadcast implementation (Section 4).

To evaluate the practical usability of our library, we put it to work as the foundation of a distributed in-memory key-value store and empirically evaluate its performance when deployed to a cluster of geo-distributed nodes (Section 5). Section 6 contextualizes our contributions with respect to the existing research, and Section 7 summarizes our work. All of our code, including our causal broadcast library, our proof development, and our key-value store case study, is available in the anonymously submitted supplemental material.

2Totally-ordered delivery does not imply causal delivery in general, although Birman et al. [1991]’s extension of causal broadcast to atomic broadcast provides both.
2 SYSTEM MODEL AND VERIFICATION TASK

In this section, we describe our system model (Section 2.1) and the causal broadcast protocol that we implemented and verified (Section 2.2). We then define the process-local causal delivery property that we need to show holds of our implementation (Section 2.3).

2.1 System Model

We model a distributed system as a finite set of \(N \) processes (or nodes) \(p_i, i : 1..N \), distinguished by process identifier \(i \). Processes communicate with other processes by sending and receiving messages. In our setting, all messages are broadcast messages, meaning that they are sent to all processes in the system, including the sender itself.\(^3\) Our network model is asynchronous, meaning that sent messages can take arbitrarily long to be received. Furthermore, for our safety result we need not assume that sent messages are eventually received, so our network is also unreliable (although such an assumption would be necessary for liveness; see Section 4.3 for a discussion).

We distinguish between message receipt and message delivery: processes can receive messages at any time and in any order, and they may further choose to deliver a received message, causing that message to take effect at the node receiving it and be handed off to, for example, the user application running on that node. Importantly, although nodes cannot control the order in which they receive messages, they can control the order in which they deliver those messages. Imagine a “mail clerk” on each node that intercepts incoming messages and chooses whether, and when, to deliver each one (by handing it off to the above application layer and recording that it has been delivered). Our task will be to ensure that the mail clerk delivers the messages in an order consistent with causality, regardless of the order in which messages were received — implementing the behavior illustrated by the dashed arrows in Figure 1.

For our discussion of causal delivery, we need to consider two kinds of events that occur on processes: broadcast events and deliver events. We will use \(\text{broadcast}(m) \) to denote an event that sends a message \(m \) to all processes,\(^4\) and \(\text{deliver}_m(p) \) to denote an event that delivers \(m \) on process \(p \). We refer to the totally ordered sequence of events that have occurred on a process \(p \) as the process history, denoted \(h_p \). For events \(e \) and \(e' \) in a process history \(h_p \), we say that \(e \) and \(e' \) are in process order, written \(e \to_p e' \), if \(e \) occurs in the subsequence of \(h_p \) that precedes \(e' \).

An execution of a distributed system consists of the set of all events in all process histories, together with the process order relation \(\to_p \) over events in each \(h_p \) and the happens-before relation \(\to_{hb} \) over all events. The happens-before relation, due to Lamport [1978], is an irreflexive partial order that captures the potential causality of events in an execution: for any two events \(e \) and \(e' \), if \(e \to_{hb} e' \), then \(e \) may have caused \(e' \), but we can be certain that \(e' \) did not cause \(e \).

Definition 1 (Happens-before (\(\to_{hb} \)) [Lamport 1978]). Given events \(e \) and \(e' \), we say that \(e \) happens before \(e' \), written \(e \to_{hb} e' \), iff:

- \(e \) and \(e' \) occur in the same process history \(h_p \) with \(e \to_p e' \); or
- \(e \) is a message broadcast event and \(e' \) is its corresponding deliver event, that is, \(e = \text{broadcast}(m) \) and \(e' = \text{deliver}_p(m) \) for a given message \(m \) and some process \(p \); or
- \(e \to_{hb} e'' \) and \(e'' \to_{hb} e' \) for some event \(e'' \).

Events in the same process history are totally ordered by the happens-before relation (For example, in Figure 1, Alice’s broadcast of “I lost my wallet...” happens before her broadcast of “Found it!”),

\(^3\) For simplicity, we omit the messages that processes send to themselves from examples in Figures 1, 2, and 3. We assume that these self-sent messages are sent and delivered in one atomic step on the sender’s process.

\(^4\) Although a broadcast message has \(N \) recipients, and may be implemented as \(N \) individual unicast messages under the hood, we treat the sending of the message as a single event on the sender’s process.
and the broadcast of a given message happens before any delivery of that message. We say that $m \rightarrow_{hb} m'$ if $broadcast(m) \rightarrow_{hb} broadcast(m')$, using the notation \rightarrow_{hb} for both relations.

To avoid anomalous executions like that in Figure 1, our task will be to ensure that processes deliver messages in an order consistent with the \rightarrow_{hb} partial order. This property is known as causal delivery; our definition is based on standard ones in the literature [Birman et al. 1991; Raynal et al. 1991]:

Definition 2 (Causal delivery). An execution \mathbf{x} observes causal delivery if, for all processes p in \mathbf{x}, for all messages m_1 and m_2 such that $deliver_p(m_1)$ and $deliver_p(m_2)$ are in h_p,

$$m_1 \rightarrow_{hb} m_2 \iff deliver_p(m_1) \rightarrow_p deliver_p(m_2).$$

The causal delivery property says that if message m_1 is sent before message m_2 in an execution, then any process delivering both m_1 and m_2 should deliver m_1 first. For example, in Figure 1 (left), the “I lost my wallet...” message causally precedes the “Found it!” message, because Alice broadcasts both messages with “I lost my wallet...” first, and so Bob and Carol would each need to deliver “I lost my wallet...” first for the execution to observe causal delivery. Furthermore, under causal delivery m_1 and m_2 must be delivered in causal order even if they were sent by different processes. For example, in Figure 1 (right), Alice’s “Found it!” message causally precedes Bob’s “Glad to hear it!” message, and therefore Carol, who delivers both messages, must deliver Alice’s message first for the execution to observe causal delivery.

2.2 Background: Causal Broadcast Protocol

The causal broadcast protocol that we implemented and verified is due to Birman et al. [1991]; in this section, we describe how it works at a high level before diving into our Liquid Haskell implementation in Section 3.

The protocol is based on vector clocks, a type of logical clock well-known in the distributed systems literature [Fidge 1988; Mattern 1989; Schmuck 1988]. Like other logical clocks, vector clocks do not track physical time (which would be problematic in distributed computations that lack a global physical clock), but instead track the order of events. Readers already familiar with vector clocks may skip ahead to Section 2.2.2.

2.2.1 Vector Clock Protocol.** A vector clock is a sequence of length N (the number of processes in the system), which is indexed by process identifiers $i : 1..N$, and where each entry is a natural number. At the beginning of an execution every process p initializes its own vector clock, denoted $VC(p)$, to zeroes. The protocol proceeds as follows:

- When a process p_i broadcasts a message m, p_i increments its own position in its vector clock, $VC(p_i)[i]$, by 1.
- Each message broadcast by a process p carries as metadata the value of $VC(p)$ that was current at the time the message was broadcast (just after incrementing), denoted $VC(m)$.
- When a process p delivers a message m, p updates its own vector clock $VC(p)$ to the pointwise maximum of $VC(m)$ and $VC(p)$ by taking the maximum of the two integers at each index: for $k : 1..N$, we update $VC(p)[k]$ to $\max(VC(m)[k], VC(p)[k])$.

Figure 2 illustrates an example execution of three processes running the vector clock protocol.

We can define a partial order on vector clocks of the same length as follows: for two vector clocks a and b indexed by $i : 1..N$,

- $a \leq_{vc} b$ if $\forall i. a[i] \leq b[i]$, and
- $a <_{vc} b$ if $a \leq_{vc} b$ and $a \neq b$.

This ordering is not total: for example, in Figure 2, m_1 carries a vector clock of $[1, 0, 0]$ while m_3 carries a vector clock of $[0, 0, 1]$, and neither is less than the other. Correspondingly, m_1 and m_3 are
Fig. 2. An example execution using the vector clock protocol. As each process broadcasts and delivers messages, it updates its vector clock according to the protocol. For example, when process p_1 broadcasts m_1, it increments its own position in its clock immediately before broadcasting the message, and m_1 carries the incremented clock $[1,0,0]$ as metadata.

Causally independent (or concurrent): neither message has a causal dependency on the other. On the other hand, m_2 causally depends on m_1, which can be confirmed because m_1’s vector clock $[1,0,0]$ is less than $[1,1,0]$ carried by m_2. In fact, vector clocks under this protocol precisely characterize the causal partial ordering [Fidge 1988; Mattern 1989]: for all messages m, m', it can be shown that

$$m \rightarrow_{hb} m' \iff VC(m) <_{VC} VC(m').$$

This powerful two-way implication lets us boil down the problem of reasoning about causal relationships between messages to the problem of comparing fixed-length vectors of integers.

By itself, the vector clock protocol does not enforce causal delivery of messages. Indeed, the execution in Figure 2 violates causal delivery: under causal delivery, process p_3 would not deliver m_1 before m_2. However, the vector clock metadata attached to each message can be used to enforce causal delivery of broadcast messages, as we will see next.

2.2.2 Deliverability. The vector clock attached to a message can be thought of as a summary of the causal history of that message: for example, in Figure 2, m_2’s vector clock of $[1,1,0]$ expresses that one message from p_1 (represented by the 1 in the first entry of the vector) causally precedes m_2. Furthermore, each process’s vector clock tracks how many messages it has delivered from each process in the system (including itself, since self-sent messages are sent and delivered locally in one atomic step). We can exploit this property by having the recipient of each broadcast message compare the message’s attached vector clock with its own vector clock to check for deliverability, as follows:

Definition 3 (Deliverability [Birman et al. 1991]). A message m broadcast by a process p_i is deliverable at a process $p_j \neq p_i$ if, for $k : 1..N$,

$$VC(m)[k] = VC(p_j)[k] + 1 \quad \text{if } k = i, \text{ and}$$

$$VC(m)[k] \leq VC(p_j)[k] \quad \text{otherwise.}$$
Our notional “mail clerk” will use Definition 3’s deliverability condition to decide when to deliver received messages. How it works is a bit subtle, but worth understanding because of the key role it plays in the protocol (and in our implementation, as we will see in Section 3):

- The first clause of Definition 3 ensures that \(m \) is the recipient \(p_j \)’s next expected message from the sender, \(p_i \). The number of messages from \(p_i \) that \(p_j \) has already delivered will appear in \(VC(p_j) \) at index \(i \), so \(VC(m)[i] \) should be exactly one greater than \(VC(p_j)[i] \). If \(VC(m)[i] \) is more than one greater than \(VC(p_j)[i] \), it means that there is at least one other message \(m’ \) from \(p_i \) that causally precedes \(m \) and that \(p_j \) has not yet delivered, and so \(p_j \) should not deliver \(m \) while \(m’ \) remains undelivered. (The case where \(VC(m)[i] \leq VC(p_j)[i] \) cannot occur, because \(p_i \) is always at least as up to date on its own sent messages as \(p_j \) is.)

- The second clause ensures that \(m \)’s causal history does not include any messages sent by processes other than \(p_i \) that \(p_j \) has not yet delivered. If \(m \)’s vector clock is greater than \(p_j \)’s vector clock in any position \(k \neq i \), then it means that, before sending \(m \), process \(p_i \) must have delivered some message \(m’ \) from \(p_k \) that has not yet been delivered at \(p_j \). By Definition 1, we have \(broadcast(m’) \rightarrow_h b deliver_{p_i}(m’) \), and because \(m’ \) was delivered at \(p_i \) before \(m \) was broadcast by \(p_i \), we have \(deliver_{p_i}(m’) \rightarrow_h b broadcast(m) \), and by transitivity of \(\rightarrow_h b \) we have \(broadcast(m’) \rightarrow_h b broadcast(m) \). Therefore \(m’ \rightarrow_h b m \), and so \(p_j \) should not deliver \(m \) while \(m’ \) remains undelivered.

Combining the vector clock protocol of Section 2.2.1 with the deliverability property of Definition 3 gives us Birman et al.’s causal broadcast protocol. Whenever a process receives a message, it buffers the message until it is deliverable according to Definition 3. Each process stores messages that need to be buffered in a process-local queue, the delay queue. Whenever a process delivers a message and updates its own vector clock, it can check its delay queue for buffered messages and deliver any messages that have become deliverable (which may in turn make other buffered messages deliverable).
2.2.3 Example Executions of the Causal Broadcast Protocol. To illustrate how the protocol works, Figure 3 shows the two problematic executions we saw previously in Figure 1, but now with the causal broadcast protocol in place to prevent violations of causal delivery. Each process keeps a vector clock with three entries corresponding to Alice, Bob, and Carol respectively. Suppose that \(m_{\text{lost}} \) is Alice’s “I lost my wallet…” message, \(m_{\text{found}} \) is Alice’s “Found it!” message, and \(m_{\text{glad}} \) is Bob’s “Glad to hear it!” message.

In Figure 3 (left), Bob receives Alice’s messages in the order she broadcasted them, and so he can deliver them immediately. For example, when Bob receives \(m_{\text{lost}} \), his own vector clock is \([0,0,0]\), and the vector clock on the message is \([1,0,0]\). The message is deliverable at Bob’s process because it is one greater than Bob’s own vector clock in the sender’s (Alice’s) position, and less than or equal to Bob’s vector clock in the other positions, so Bob delivers it immediately after receiving it. Carol, on the other hand, receives \(m_{\text{found}} \) first. This message has a vector clock of \([2,0,0]\), so it is not immediately deliverable at Carol’s process because Carol’s vector clock is \([0,0,0]\), and so the entry of 2 at the sender’s index is too large, indicating that the message is “from the future” and needs to be buffered in Carol’s delay queue for later delivery, after Carol delivers \(m_{\text{lost}} \).

In Figure 3 (right), Bob delivers two messages from Alice and then broadcasts \(m_{\text{glad}} \). \(m_{\text{glad}} \) has a vector clock of \([2,1,0]\), indicating that it has two messages sent by Alice in its causal history. When Carol receives \(m_{\text{glad}} \), her own vector clock is only \([1,0,0]\), indicating that she has only delivered one of those messages from Alice so far, so Carol must buffer \(m_{\text{glad}} \) in her delay queue until she receives and delivers \(m_{\text{found}} \), the missing message from Alice, increasing her own vector clock to \([2,0,0]\). Now \(m_{\text{glad}} \) is deliverable at Carol’s process, and Carol can deliver it, increasing her own vector clock to \([2,1,0]\).

2.3 Verification Task

Thanks to the relationship between the happens-before ordering and the vector clock ordering expressed by Equation (1), we can reduce the problem of determining that a distributed execution observes causal delivery to a condition that is locally checkable at each process. We call this condition process-local causal delivery:

Definition 4 (Process-local causal delivery). A process \(p \) observes process-local causal delivery if, for all messages \(m_1 \) and \(m_2 \) such that \(\text{deliver}_p(m_1) \) and \(\text{deliver}_p(m_2) \) are in \(h_p \),

\[
\text{VC}(m_1) <_{\text{VC}} \text{VC}(m_2) \implies \text{deliver}_p(m_1) \rightarrow_p \text{deliver}_p(m_2).
\]

Our verification task will be to prove that our implementation of the causal broadcast protocol of Section 2.2 ensures that processes that run the protocol observe process-local causal delivery:

Theorem 1 (Local Correctness of Causal Broadcast Protocol). A process that runs the causal broadcast protocol observes process-local causal delivery.

From Equation (1) and Theorem 1 we can immediately conclude that executions produced by a distributed system of processes that run the causal broadcast protocol observe causal delivery.

Theorem 2 (Global Correctness of Causal Broadcast Protocol). An execution in which all processes run the causal broadcast protocol observes causal delivery.

Proof. Let \(x \) be an execution in which all processes run the causal broadcast protocol. Let \(p \) be a process in \(x \) and let \(m_1 \) and \(m_2 \) be messages such that \(\text{deliver}_p(m_1) \) and \(\text{deliver}_p(m_2) \) are in \(h_p \) and \(m_1 \rightarrow_{hb} m_2 \). By Equation (1), \(\text{VC}(m_1) <_{\text{VC}} \text{VC}(m_2) \). Therefore, by Theorem 1, \(\text{deliver}_p(m_1) \rightarrow_p \text{deliver}_p(m_2) \), as required by Definition 2. \(\square \)

Theorem 1 is the heart of our verification task. In the following sections, we show how we use Liquid Haskell to implement and verify the causal broadcast protocol. After presenting the
protocol implementation in Section 3, in Section 4 we develop the machinery necessary to make Theorem 1 precise, and then mechanically prove it using Liquid Haskell.

3 IMPLEMENTATION

In this section, we describe our implementation of Birman et al.’s causal broadcast protocol of Section 2 as a Liquid Haskell library. After a brief overview of refinement types and Liquid Haskell in Section 3.1, Section 3.2 describes the types used to implement our system model and vector clock operations, and Section 3.3 describes our implementation of the protocol itself. Finally, Section 3.4 discusses how a user application would use our library.

3.1 Background: Refinement Types and Liquid Haskell

Refinement types [Rushby et al. 1998; Xi and Pfenning 1998] let programmers specify types augmented with logical predicates, called refinement predicates, that restrict the set of values that can inhabit a type. Depending on the expressivity of the predicate language, programmers can specify rich properties using refinement types, sometimes at the expense of decidability of type checking. Liquid Haskell avoids that problem by restricting refinement predicates to an SMT-decidable logic [Rondon et al. 2008; Vazou et al. 2014]. For example, in Liquid Haskell we can define a refinement type \(\text{EvenInt} = \{ v : \text{Int} \mid v \mod 2 = 0 \} \), where \(v \mod 2 = 0 \) is the refinement predicate and \(v : \text{Int} \) binds the name \(v \) for values of type \(\text{Int} \) that appear in the refinement predicate. One could define an analogous \(\text{OddInt} = \{ v : \text{Int} \mid v \mod 2 = 1 \} \) and a function for adding them:

\[
\text{oddAdd} :: \text{OddInt} \rightarrow \text{OddInt} \rightarrow \text{EvenInt}
\]

\[
\text{oddAdd} \ x \ y = x + y
\]

The type \(\text{OddInt} \) of the arguments to \(\text{oddAdd} \) expresses the precondition that \(x \) and \(y \) will be odd, and the return type \(\text{EvenInt} \) expresses the postcondition that \(x + y \) will evaluate to an even number. Liquid Haskell automatically proves that such postconditions hold by generating verification conditions that are checked at compile time by the underlying SMT solver, Z3 [de Moura and Björner 2008]. If the solver finds a verification condition to be invalid, typechecking fails. If the return type of \(\text{oddAdd} \) had been \(\text{OddInt} \), for instance, the above code would fail to typecheck.

Aside from preconditions and postconditions of individual functions, Liquid Haskell makes it possible to verify extrinsic properties that are not specific to any particular function’s definition. For example, the type of \(\text{sumOdd} \) below expresses the extrinsic property that the sum of an odd and an even number is an odd number:

\[
\text{sumOdd} :: x : \text{OddInt} \rightarrow y : \text{EvenInt} \rightarrow \{ _ : \text{Proof} \mid (x + y) \mod 2 = 1 \}
\]

\[
\text{sumOdd} _ _ = ()
\]

Here, \(\text{sumOdd} \) is a Haskell function that returns a proof that the sum of \(x \) and \(y \) is odd. (In Liquid Haskell, \(\text{Proof} \) is a type alias for Haskell’s \(() \) (unit) type.) Because the proof of this particular property is easy for the SMT solver to carry out automatically, the body of the \(\text{sumOdd} \) function need not say anything but \(() \). In general, however, programmers can specify arbitrary extrinsic properties in refinement types, including properties that refer to arbitrary Haskell functions via the notion of reflection [Vazou et al. 2017]. The programmer can then prove those extrinsic properties by writing Haskell programs that inhabit those refinement types, using Liquid Haskell’s provided proof combinators — with the help of the underlying SMT solver to simplify the construction of these proofs-as-programs [Vazou et al. 2018, 2017].

Liquid Haskell thus occupies a position at the intersection of SMT-based program verifiers such as Dafny [Leino 2010], and theorem provers that leverage the Curry-Howard correspondence such as Coq [Bertot and Castran 2010] and Agda [Norell 2008]. A Liquid Haskell program can consist
of both application code like oddAdd (which runs at execution time, as usual) and verification code like sumOdd (which is never run, but merely typechecked), but, pleasantly, both are just Haskell programs, albeit annotated with refinement types. Since Liquid Haskell is based on Haskell, programmers can gradually port Haskell programs to Liquid Haskell, adding richer specifications to code as they go. For instance, a programmer might begin with an implementation of oddAdd with the type \(\text{Int} \rightarrow \text{Int} \rightarrow \text{Int}\), later refine it to \(\text{OddInt} \rightarrow \text{OddInt} \rightarrow \text{EvenInt}\), even later prove the extrinsic property \(\text{sumOdd}\), and still later use the proof returned by \(\text{sumOdd}\) as a premise to prove another, more interesting extrinsic property.

3.2 System Model and Vector Clocks

We begin by defining types to implement our system model and vector clock operations. Process identifiers are natural numbers and double as indexes into vector clocks, which are represented by a list of natural numbers.

```haskell
type PID = Nat

type VC = [Nat]
```

Messages have type \(M_r\), where the \(r\) parameter is the application-defined type of the raw message content (e.g., a JSON-formatted string).

```haskell
data M r = M { mVC :: VC, mSender :: PID, mRaw :: r }
```

A message has three fields: \(mVC\) and \(mSender\) are respectively the metadata that capture when the message was sent (as a VC) and who sent it (as a PID), and \(mRaw\) contains the raw message content.

An event can be either a Broadcast (to the network) or a Deliver (to the local user application for processing), and a process history \(H\) is a list of events.

```haskell
data Event r = Broadcast (M r) | Deliver PID (M r)
type H r = [Event r]
```

To implement the vector clock protocol of Section 2.2.1, we need several standard operations on vector clocks, with the below interface:

```haskell
vcEmpty :: Nat \rightarrow VC
vcTick :: VC \rightarrow PID \rightarrow VC
vcCombine :: VC \rightarrow VC \rightarrow VC
vcLessEqual :: VC \rightarrow VC \rightarrow Bool
vcLess :: VC \rightarrow VC \rightarrow Bool
```

\(vcEmpty\) initializes a vector clock of a given size with zeroes, \(vcTick\) increments a vector clock at a given index, \(vcCombine\) computes the pointwise maximum of two vector clocks, and \(vcLessEqual\) and \(vcLess\) implement the vector clock ordering described in Section 2.2.1. As we will see in the following sections, our causal broadcast implementation uses \(vcTick\) and \(vcCombine\) when broadcasting and delivering messages, respectively. The prose definitions of all these operations translate directly into idiomatic Haskell; for example, the implementation of \(vcCombine\) is \(\text{zipWith max}\).

So far, all of the types we have shown here seem to be standard Haskell types, but this is a bit of a fib. In our actual implementation, additional Liquid Haskell refinements on VC and PID — elided here for readability — ensure that all functions are called with compatible vector clocks (having the same length) and PIDs (natural numbers smaller than the length of a vector clock).\(^5\) Moreover, we use Liquid Haskell to extrinsically prove that \(vcCombine\) is associative, commutative, idempotent,

\(^5\) Recall from Section 2.1 that we model a distributed system as a finite set of \(N\) processes. We want our implementation to be agnostic to \(N\), yet we need to know what \(N\) is because it determines the length of vector clocks (and hence what constitutes a valid index into a vector clock). We accomplish this in Liquid Haskell by parameterizing types with an \(N\)
and inflationary, and that \(\text{vcLess} \) is a strict partial order (i.e., irreflexive, asymmetric, and transitive). These extrinsic proofs are carried out by induction on the structure of vector clocks.

3.3 Causal Broadcast Protocol Implementation

We express the causal broadcast protocol of Section 2.2 as a state transition system.

3.3.1 Process Type

The state data structure \(P \) represents a process and is parameterized by the type of raw content, \(r \):

\[
\text{data } P \ r = P \{ \ pVC :: VC, \ pID :: PID, \ pDQ :: [M \ r] \\
\quad , \ pHist :: \{ \ h :: H \ r | \ \text{histVC} \ h == \ pVC \} \}
\]

The fields of \(P \) include the local vector clock \(pVC \), the local process identifier \(pID \), a delay queue of received but not-yet-delivered messages \(pDQ \), and (importantly for our verification task) the process history \(pHist \). We provide a \(pEmpty :: \text{Nat} \to \text{PID} \to P \ r \) function that initializes a process with a vector clock of the given length containing zeroes, the given process identifier, and an empty delay queue and empty process history.

The type of the process history \(pHist \) deserves further discussion, as it is our first use of a Liquid Haskell feature called \textit{datatype refinements}. The datatype refinement on the \(pHist \) field says that it contains a history \(h \) of the type \(H \ r \) defined in the previous section, but with an additional constraint \(\text{histVC} \ h == \ pVC \). This constraint expresses the intuition that the vector clock \(pVC \) and the history \(h \) “agree” with each other: for any process \(p \) starting with a \(pVC \) containing all zeros and an empty \(pHist \), each addition of a \textit{Deliver} \((pID \ p) \ m \) event to the history must coincide with an update to \(pVC \ p \) of the form \(\text{vcCombine} \ (mVC \ m) \ (pVC \ p) \). Accordingly, \(\text{histVC} \ h \) is defined as the supremum of vector clocks on \textit{Deliver} events in \(h \). We extrinsically prove in Liquid Haskell that this \(pVC\text{-}pHist \) agreement property is true of the empty process and preserved by each transition in our state transition system, but since the proofs are relatively uninteresting we do not include them. We next describe these transition functions.

3.3.2 State Transitions

The transition functions are \(\text{receive} \), \(\text{deliver} \), and \(\text{broadcast} \), with the following interface:

\[
\begin{align*}
\text{receive} : & \ M \ r \to P \ r \to P \ r \\
\text{deliver} : & \ P \ r \to \text{Maybe} \ (M \ r, \ P \ r) \\
\text{broadcast} : & \ r \to P \ r \to (M \ r, \ P \ r)
\end{align*}
\]

The \(\text{receive} \) function adds a message from the network to the delay queue, the \(\text{deliver} \) function pops a deliverable message (if any) from the delay queue, and the \(\text{broadcast} \) function prepares raw content of type \(r \) for broadcast by wrapping it in a message. Of these transition functions, only \(\text{deliver} \) and \(\text{broadcast} \) are particularly interesting from the perspective of our verification effort, since \(\text{receive} \) only adds messages to the delay queue and cannot affect whether causal delivery is violated. We next dive into the implementation of \(\text{deliver} \) and \(\text{broadcast} \), respectively.

3.3.3 Deliver

Figure 4 shows the implementation of \(\text{deliver} \), as well as its constituents \(\text{dequeue} \), \(\text{deliverable} \), and \(\text{deliverableHelper} \). At a high level, \(\text{deliver} \) calls \(\text{dequeue} \) on a process’s delay queue and then performs bookkeeping: If \(\text{dequeue} \) popped a deliverable message, then \(\text{deliver} \) returns that message and updates the process with a new vector clock according to the vector clock protocol, the new delay queue returned by \(\text{dequeue} \), and a new process history which records the delivery of the message. The \(\text{dequeue} \) function plays its part by removing and returning the first deliverable message found in the delay queue.
Most importantly, the `deliverable` predicate implements the deliverability condition of Definition 3 to check whether a message `m` is deliverable at time `p_vc`. It works by calling `deliverableHelper` (mSender `m`) on each offset in the message vector clock `mVC` and process vector clock `p_vc`, and returning the conjunction of those results. The function `finAsc` provides those offsets in ascending order, and, combined with `zipWith`, lets us implement the subtle deliverability condition of Definition 3 in `deliverableHelper`, almost exactly as Definition 3 is written (except that our vector clocks are zero-indexed). We omit the implementation of `finAsc` from Figure 4 for brevity, but its refinement type guarantees that it returns an ascending list of length `n` containing natural numbers less than `n`, using Liquid Haskell’s abstract refinements feature [Vazou et al. 2013].

As an illustrative example of the behavior of the `deliverable` predicate, consider calling it on a message sent by `mSender `m == 1 with vector clock `mVC m == [0, 2, 2]` and process vector clock `p_vc == [1, 1, 0]`. Since the vector clocks have length 3, the call to `finAsc` in `deliverable` would evaluate to `[0, 1, 2]`, and the function body of `deliverable` would be equivalent to

\[
\text{and} \left(\text{zipWith3} \left(\text{deliverableHelper} \right) \left(\text{mSender} \ (m) \right) \ (\text{finAsc} \ (n)) \ (\text{mVC} \ (m)) \ (\text{p_vc}) \right)
\]
\begin{verbatim}
broadcast :: r -> P r -> (M r, P r)
broadcast raw p =
 let m = M { mVC = vcTick (pVC p) (pID p)
 , mSender = pID p
 , mRaw = raw }
 p' = p { pDQ = m : pDQ p
 , phist = Broadcast m : phist p }
 Just tup = deliver p'
 in tup

Fig. 5. Implementation of broadcast. We prove that deliver p' is a Just value using an extrinsic proof.
\end{verbatim}

which expands to
\begin{verbatim}
and [deliverableHelper 1 0 0 1 -- 1 /= 0 && 0 <= 1 == True,
 deliverableHelper 1 1 2 1 -- 1 == 1 && 2 == 1 + 1 == True,
 deliverableHelper 1 2 2 0 -- 1 /= 2 && 2 <= 0 == False]
\end{verbatim}

In each call to deliverableHelper, the first argument is mSender m and the next three arguments are elements drawn from finAsc n, mVC m, and p_vc (such that finAsc n provides the k indexes). In the first call, mSender m is not k, so the message clock 0 must be less-than or equal-to the process clock 1 (which it is). In the second call, mSender m is k, so the message clock 2 must be equal-to the process clock 1 plus one (which it is). Finally, in the last call, mSender m is not k, and so the message clock 2 must be less-than or equal-to the process clock 0 (which it is not). Therefore, the message m is not deliverable and must remain in the delay queue for now. It will only become deliverable once two messages from the node with process identifier 2 have been delivered.

3.3.4 Broadcast. Figure 5 shows the implementation of the broadcast function. First, broadcast constructs a message m for the value raw by incrementing the pID p index of its own vector clock pVC p, and attaching that pID p to m as mSender. Next, broadcast constructs an intermediate process value p' containing m at the head of the delay queue and a new process history recording the broadcast event for this message. Last, broadcast delegates to deliver to deliver m at its own sender, p'. As we will see in Section 4, implementing broadcast in terms of deliver simplifies proving properties about our implementation, because a proof about broadcast can often delegate to an existing proof about deliver.

A final thing to note is that although deliver’s return type is Maybe (M r, P r), the deliver p’ call in broadcast is guaranteed by Liquid Haskell to evaluate to a Just value containing the next process and the message that was generated for broadcast. We prove this property using an extrinsic proof, not shown here. The intuition is that messages a process sends to itself are always immediately deliverable. When a process increments its own index in the vector clock that it places in a message, the message immediately becomes deliverable at that process.

3.4 Example Application Architecture
The receive, deliver, and broadcast functions are the interface made available to user applications of our causal broadcast library. When deliver returns a message, the user application must process it immediately. The user application must also immediately put the message returned by broadcast
Fig. 6. Example architecture for a distributed application using our causal broadcast library. The mnemonic standins Process, Event, and Message refer to the types P, r, $Event$, and M, r defined in our implementation. An application node using this architecture participates in the causal broadcast protocol using a single process data structure and the functions receive, broadcast, and deliver to safely manage message-passing state. Clients make requests to a node, possibly updating application state, and the node may generate messages to replicate updates or perform other tasks. The paths of outbound messages are indicated with yellow-orange arrows, and blue-purple arrows show the paths of inbound messages.

on the network and also process the message locally.\(^6\) This design implies that user applications should not update their own state directly when communication is in order, but rather, generate a message and then update their state in response to its delivery.

Figure 6 shows an example architecture of an application using our causal broadcast library. A collection of (potentially geo-distributed) peer nodes, which we call the causal broadcast cluster, each run the causal broadcast protocol along with their user application code (for instance, a key-value store or a group chat application). Clients of the application communicate their requests to the nodes; one or more clients may communicate with each node. The application instance on a node generates messages, broadcasts them to other nodes, and delivers messages received from other nodes. Later on, in Section 5, we will see a case study of an application with this architecture.

4 VERIFICATION

In this section we mechanize process-local causal delivery (Definition 4) for our implementation of the causal broadcast protocol and describe the highlights of our Liquid Haskell proof development showing that our implementation satisfies Theorem 1. In Section 4.1 we define process-local causal delivery (abbreviated “PLCD” henceforth) in Liquid Haskell, and in Section 4.2 we show that PLCD holds for our implementation (Theorem 1) by showing that each of the receive, deliver, and broadcast transitions of Section 3.3 results in a process that observes PLCD. Finally, in Section 4.3 we briefly discuss the liveness of our implementation.

4.1 Process-Local Causal Delivery as a Refinement Type

We define PLCD (Definition 4) as a refinement type in Liquid Haskell and explain the components of its definition.

\(^6\)In practical applications, it may be advantageous to separate these concerns about handling return values into an additional message-handling layer, but that is beyond our scope.
The type alias \texttt{ProcessLocalCausalDelivery} \(r \) \(\text{ID} \) \(\text{HIST} \) fixes a process identifier \(\text{ID} \) and a process history \(\text{HIST} \). It is the type of a function that given messages \(m_1 \) and \(m_2 \), both of which have already been delivered in the specified process history and for which the vector clock of \(m_1 \) is less than that of \(m_2 \), produces a proof that the delivery event of \(m_1 \) precedes the delivery event of \(m_2 \) in the process history. The \(\text{vcLess} \) function is part of the vector clock interface described in Section 3.2.

We explain \texttt{processOrder} next. Recall from Section 2.1 that \(e_1 \rightarrow_p e_2 \) means that \(e_1 \) precedes \(e_2 \) in the process history \(h_p \). In our implementation, a process history is a list of events (Section 3.2), and the \texttt{broadcast} (Figure 5) and \texttt{deliver} (Figure 4) functions modify the process history by consing a new \texttt{Broadcast} or \texttt{Deliver} event, respectively, to the left of the existing process history. Therefore, for any process history \(e:h, h \) is the list of events that precede \(e \). We can therefore define the predicate \(\text{processOrder} \ h \ e \ e' \) that returns \text{True} if \(e \) is present in the list of events that precede \(e' \) in \(h \) as follows:

\[
\text{processOrder} :: \text{Eq } r \Rightarrow \text{H } r \rightarrow \text{Event } r \rightarrow \text{Event } r \rightarrow \text{Bool}
\]

\[
\text{processOrder } \text{hist } e \ e' = \text{elem } e \ (\text{tailForHead } e' \ \text{hist})
\]

\[
\text{tailForHead} :: \text{Eq } a \Rightarrow a \rightarrow [a] \rightarrow [a]
\]

\[
\text{tailForHead } _ [] = []
\]

\[
\text{tailForHead } e \ (x:xs) = \text{if } e==x \ \text{then } xs \ \text{else } \text{tailForHead } e \ xs
\]

We extrinsically proved that \text{processOrder} is a strict total order under the assumption that the events in a process history are distinct.

4.2 Proving Local Correctness of the Causal Broadcast Protocol

To mechanize Theorem 1 and its proof in Liquid Haskell, we first need to make precise what Theorem 1 means by “a process that runs the causal broadcast protocol.” Recall the state transition system consisting of the process type \(P \) \(r \) and the functions \texttt{receive}, \texttt{deliver}, and \texttt{broadcast} discussed in Section 3.3. We need to prove (1) that a process satisfies PLCD in its initial, empty state returned by \texttt{pEmpty}, and (2) that whenever a process satisfying PLCD transitions to a new state via any sequence of steps of the \texttt{receive}, \texttt{deliver}, or \texttt{broadcast} transition functions, the resulting process state still satisfies PLCD. Most of the action of our proof development happens in handling \texttt{deliver} steps, as we will see below in Section 4.2.3.

A proof that the empty process observes PLCD as defined in Section 4.1 is trivially discharged by Liquid Haskell, and so we do not include it here. We turn our attention to proving that each of the state transitions preserves PLCD. To use the \texttt{ProcessLocalCausalDelivery} type alias with the process type, \(P \) \(r \), we need a small adapter to extract the corresponding fields, \texttt{PLCD}. The type alias \(\text{PLCD } r \) \(\text{PROC} \) takes a process value \(P \) \(r \) and returns the same theorem as seen in Section 4.1.8

\[
\text{type } \text{PLCD } r \ \text{PROC} = \text{ProcessLocalCausalDelivery } r \ \{ \text{pID } \text{PROC} \} \ \{ \text{pHist } \text{PROC} \}
\]

\footnote{In Liquid Haskell, type aliases can be parameterized either with ordinary Haskell type variables or with Liquid Haskell expression variables. In the latter case, the parameter is written in ALL CAPS.}

\footnote{When instantiating a Liquid Haskell type alias parameterized by expression variables, the expressions are wrapped with braces to distinguish them from type parameters.}
To encode the inputs to each of the causal broadcast protocol transition functions, we define a sum type over the arguments, $\text{Op } r$. Each function takes a $P r$ input and additional arguments corresponding to one of the $\text{Op } r$ constructors.

\[
\text{data Op } r = \text{OpReceive } (M r) | \text{OpDeliver } | \text{OpBroadcast } r
\]

To apply those transition functions to a process value, we define step. It branches on the constructor of $\text{Op } r$, calls a transition function discussed in Section 3.3, extracts the next process value, and throws away information unneeded for the proof.

\[
\text{step } :: \text{Op } r \rightarrow P r \rightarrow P r
\]

\[
\text{step } (\text{OpReceive } m) p = \text{receive } m p
\]

\[
\text{step } (\text{OpBroadcast } r) p = \text{case broadcast } r p \text{ of } (_, p') \rightarrow p'
\]

\[
\text{step } (\text{OpDeliver }) p = \text{case deliver } p \text{ of } \text{Just } (_, p') \rightarrow p'
\]

\[
\text{Nothing } \rightarrow p
\]

4.2.1 Theorem 1 as a Refinement Type. With Op and step in place, we can now state and prove Theorem 1. We state the theorem as follows:

\[
\text{trcPLCDpres } :: \text{ops : } [\text{Op } r] \\
\rightarrow p : P r \\
\rightarrow \text{PLCD } r \{p\} \\
\rightarrow \text{PLCD } r \{\text{foldr step } p \text{ ops}\}
\]

The trcPLCDpres property says that for every list of operations, ops, and every process, p, if p observes PLCD, then after applying the operations, the resulting p still observes PLCD. The third argument, $\text{PLCD } r \{p\}$, is a proof that PLCD holds for the starting process, p, and the result, $\text{PLCD } r \{\text{foldr step } p \text{ ops}\}$, is a proof that PLCD still holds after folding the step function over elements of ops (assuming a standard definition for foldr, the right-associative list reduction) and accumulating the results onto p. Therefore trcPLCDpres ensures that the transitive-reflexive closure of step preserves PLCD (hence the “trc” in its name). Since the $P r$ process type and the receive, deliver, and broadcast functions comprise the API provided to users of our causal broadcast library, trcPLCDpres says that any sequence of receive, deliver, and broadcast calls that a user might make will result in a PLCD-observing process. In particular, regardless of when the user calls deliver, messages from the network will never be delivered to the user application in an order that violates causality.

4.2.2 Proof of trcPLCDpres. The proof of trcPLCDpres proceeds by induction on the list of operations applied to the process.

\[
\text{trcPLCDpres } [] p p\text{PLCD } = p\text{PLCD } ? (\text{foldr step } p [] = p) \\
\text{trcPLCDpres } (\text{op:ops}) p p\text{PLCD } = \\
\text{let prev } = \text{foldr step } p \text{ ops} \\
\text{prevPLCD } = \text{trcPLCDpres } \text{ops } p \text{ PLCD} \\
\text{in stepPLCDpres } \text{op prev prevPLCD} \\
\text{ ? (foldr step } p \text{ (op:ops) = step } \text{op (foldr step } p \text{ ops)}\)
\]

There are two cases: a base case and an inductive case. Both cases return partially applied proof functions which themselves take two message arguments and produce appropriate evidence about processOrder.\(^9\)

\(^9\) Both cases of trcPLCDpres use the $?$ and $===$ operators provided by Liquid Haskell. In Liquid Haskell, $x ? p$ returns x, and adds the information produced by p to the SMT logic to help with reasoning. Additionally, $===$ is used to explicitly verify equalities and add them to the SMT logic.
In the base case, the operations list is []. The input proof p_{PLCD} is sufficient to show that PLCD holds after the fold, because the fold leaves p unchanged. In the inductive case, the operations list is $op:ops$. The inductive assumption (named $prev_{PLCD}$) is that $trc_{PLCDpres}$ holds for the process (named $prev$) obtained by applying the tail of operations, ops, to p. With the inductive assumption, what remains is to show that applying a single operation to $prev$ obtains a process for which $trc_{PLCDpres}$ holds. For that step we define a lemma, $step_{PLCDpres}$. The $step_{PLCDpres}$ property states that for a single operation op, and process p, if PLCD holds for p, then it still holds after applying op using $step$:

$$
\begin{align*}
\text{step}_{PLCDpres} & :: \text{op} : \text{Op} r \\
& \rightarrow \text{p} : \text{P} r \\
& \rightarrow \text{PLCD} \ r \ \{p\} \\
& \rightarrow \text{PLCD} \ r \ \{\text{step} \ \text{op} \ p\}
\end{align*}
$$

The proof of $step_{PLCDpres}$ branches on the constructors for op, followed by delegation to three lemmas about each of the transition functions.

$$
\begin{align*}
\text{step}_{PLCDpres} \ \text{op} \ \text{p} \ \text{p}_{PLCD} &= \\
\text{case} \ \text{op} \ ? \ \text{step} \ \text{op} \ \text{p} \ of \\
& \text{OpReceive} \ m \rightarrow \text{receive}_{PLCDpres} \ \text{m} \ \text{p} \ \text{p}_{PLCD} \\
& \text{OpDeliver} \ \rightarrow \text{deliver}_{PLCDpres} \ \text{p} \ \text{p}_{PLCD} \\
& \text{OpBroadcast} \ r \rightarrow \text{broadcast}_{PLCDpres} \ \text{r} \ \text{p} \ \text{p}_{PLCD}
\end{align*}
$$

The most involved of these three lemmas is $deliver_{PLCDpres}$, the one that deals with $deliver$ steps. Proving $receive_{PLCDpres}$ is straightforward because calling $receive$ does not modify the process history, and so if a process observes PLCD before calling $receive$, then it still does afterward. Likewise, proving $broadcast_{PLCDpres}$ is straightforward because calling $broadcast$ only adds a $Broadcast$ event to the process history (and then calls $deliver$), and so if a process observes PLCD before calling $broadcast$, then it still does after adding the event (and for calling $deliver$ to deliver the message locally, we can delegate to $deliver_{PLCDpres}$). We therefore omit discussion of $receive_{PLCDpres}$ and $broadcast_{PLCDpres}$ and dig more deeply into the proof of $deliver_{PLCDpres}$ in the next section.

4.2.3 Deliver Transition Preservation Lemma. The $deliver_{PLCDpres}$ lemma states that a process’s observation of PLCD is preserved through calls to the $deliver$ function. It is defined with the help of a $dShim$ function that returns the new process after delivering a message, or returns the original process when no delivery occurs.

$$
\begin{align*}
\text{deliver}_{PLCDpres} & :: \text{p} : \text{P} r \rightarrow \text{PLCD} \ r \ \{p\} \rightarrow \text{PLCD} \ r \ \{\text{dShim} \ \text{p}\}
\end{align*}
$$

$$
\begin{align*}
\text{dShim} & :: \text{P} r \rightarrow \text{P} r \\
\text{dShim} \ \text{p} &= \text{case} \ \text{deliver} \ \text{p} \ of \\
& \text{Nothing} \rightarrow \text{p} \\
& \text{Just} \ (_, \ \text{p}'\) \rightarrow \text{p}'
\end{align*}
$$

Here is the proof of $deliver_{PLCDpres}$, which we explain below:

$$
\begin{align*}
\text{deliver}_{PLCDpres} \ \text{p} \ \text{p}_{PLCD} \ \text{m1} \ \text{m2} &= \\
\text{case} \ \text{dequeue} \ \text{(pVC} \ \text{p}) \ \text{(pDQ} \ \text{p}) \ \text{of} \ -- \ \text{by cases of deliver} \\
& \text{Nothing} \rightarrow \text{p}_{PLCD} \ \text{m1} \ \text{m2} \ -- \ \text{p} \ \text{is unchanged} \\
& \text{Just} \ (\text{m} \ , \ _\text{p}'\) \ -- \ \text{p} \ \text{delivered} \ \text{m} \ \text{and became} \ \text{(dShim} \ \text{p}) \\
& \ | \ \text{m} \ == \ \text{m1} \rightarrow \text{dPLCDpres1} \ \text{p} \ \text{p}_{PLCD} \ \text{(dShim} \ \text{p}) \ \text{m1} \ \text{m2} \\
& \ | \ \text{m} \ == \ \text{m2} \rightarrow \text{dPLCDpres2} \ \text{p} \ \text{p}_{PLCD} \ \text{(dShim} \ \text{p}) \ \text{m1} \ \text{m2} \\
& \ | \ \text{m} \ /= \ \text{m1} \ && \ \text{m} \ /= \ \text{m2} \rightarrow \text{dPLCDpres3} \ \text{p} \ \text{p}_{PLCD} \ \text{(dShim} \ \text{p}) \ \text{m1} \ \text{m2} \ \text{m}
\end{align*}
$$
The proof begins by deconstructing the two cases of `deque`, echoing the definition of `deliver` (Figure 4). In the case that `deque` returns `Nothing`, so does its caller `deliver`, and `dShim` returns `p` unchanged. This line of reasoning is automatically carried out by Liquid Haskell without needing to be explicitly written in the proof. As a result, we can use the input evidence that `p` observes PLCD (named `pPLCD`) to complete the case.

In the case that `deque` returns `Just (m, _pDQ)` because `deliverable m (pVC p)` was `True`, we concern ourselves with the to-be-delivered message `m`. At this point, we know that `m` will be delivered, and our task remains to show of the resulting process, `dShim p`, that for all messages `m1` and `m2`, the delivery of `m1` occurs in the subsequence of `pHist` (`dShim p`) that precedes `m2`. The proof now proceeds by cases\(^{10}\) on `m`, and calls off to yet more helper lemmas for each case. While we elide the code for these helper lemmas `dPLCDpres1`, `dPLCDpres2`, and `dPLCDpres3`, we discuss them each at a high level. We refer to `dShim p` as `p'` for brevity in the below discussion.

- **Case** `m == m1`. When `m` is equal to `m1`, it is the most recently delivered message in `p'`, but since `vcLess (mVC m1) (mVC m2)`, this would be a causal violation, and so we show this case is impossible. Recall, in this case `deliverable m (pVC p)` returned `True`, which implies a relationship between `mVC m` and `pVC p`: The `mSender m` offset in `mVC m` is exactly one greater than that of `pVC p`, and all other offsets of `mVC m` are less than or equal to that of `pVC p`. Additionally `vcLessEqual (mVC m1) (mVC m2)` by `vcLess`, and also `vcLessEqual (mVC m2) (histVC p)` because the delivery of `m2` is in `pHist p` and because `vcCombine` is inflationary, and lastly `histVC p == pVC p` by the data refinement on processes. Finally, since `vcLessEqual` is transitive we can combine these facts to conclude that `vcLessEqual (mVC m1) (pVC p)`, which contradicts the relationship implied by `deliverable m (pVC p)`.

- **Case** `m == m2`. When `m` is equal to `m2`, it is the most recently delivered message in `p'`. Let `e1` be the delivery event for `m1` with the definition `Deliver (pID p') m1` and similarly let `e2` be the delivery event for the equivalent messages `m2` and `m`. Since `pHist p'` is `e2:(pHist p)`, and `e1` is known to already be in `pHist p`, we can conclude `elem e1 (tailForHead e2 (pHist p'))`, letting us conclude that `processOrder (pHist p') e1 e2`, as required.

- **Case** `m /= m1 && m /= m2`. Finally, when `m` is a new message distinct from both `m1` and `m2`, we show that the addition of a deliver event for `m` to `pHist p` does not change the delivery ordering of `m1` and `m2`. That is, with event `e1` for delivery of `m1`, `e2` for `m2`, and `e3` for `m`, since `pHist p'` is `e3:(pHist p)`, and since `e1` and `e2` were in `pHist p` (and both are still in `pHist p'`), we can conclude that orderings about elements in `pHist p` are unchanged in `pHist p'`.

With these pieces in place, we can conclude that a PLCD-observing process continues to observe PLCD after any call to `deliver`.

To recap the proof development described in the last few sections. First, in Section 4.1 we expressed process-local causal delivery (Definition 4) as a refinement type. Next, in Section 4.2.1 we defined the property `trcPLCDpres`, which says that a PLCD-observing process continues to observe PLCD after any sequence of `receive`, `deliver`, and `broadcast` calls, making precise the claim of Theorem 1 that a process that runs the causal broadcast protocol observes PLCD. Finally, in Section 4.2.2 and Section 4.2.3 we discuss the proof of `trcPLCDpres`, with, unsurprisingly, most of our attention going toward `deliver` calls. Table 1 summarizes the size of our proof development in terms of lines of Liquid Haskell code.

\(^{10}\) `m1` and `m2` must be distinct messages because of `ProcessLocalCausalDelivery`'s premise that `vcLess (mVC m1) (mVC m2)`. Therefore the proof of `deliverPLCDpres` does not need an `m1 == m2` case because Liquid Haskell automatically proves that it is not possible.
Table 1. Lines of code used in our proof development. The LOC column includes lines of Liquid Haskell definitions, theorems, proofs, and other annotations.

<table>
<thead>
<tr>
<th>Description</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic property definitions</td>
<td>25</td>
</tr>
<tr>
<td>Properties of process histories</td>
<td>89</td>
</tr>
<tr>
<td>Properties of vector clock operations (Section 3.2)</td>
<td>137</td>
</tr>
<tr>
<td>pVC-phist agreement (Section 3.3.1)</td>
<td>44</td>
</tr>
<tr>
<td>Guaranteed deliverability of self-sent messages (Section 3.3.3)</td>
<td>106</td>
</tr>
<tr>
<td>$\text{ProcessLocalCausalDelivery}$ definition; properties of processOrder (Section 4.1)</td>
<td>81</td>
</tr>
<tr>
<td>Definitions used in PLCDpres lemmas</td>
<td>42</td>
</tr>
<tr>
<td>trcPLCDpres, stepPLCDpres, and state transition system definitions (Section 4.2)</td>
<td>63</td>
</tr>
<tr>
<td>receivePLCDpres</td>
<td>28</td>
</tr>
<tr>
<td>broadcastPLCDpres</td>
<td>54</td>
</tr>
<tr>
<td>deliverPLCDpres and helpers (Section 4.2.3)</td>
<td>163</td>
</tr>
<tr>
<td>Further helper lemmas about deliver and deliverable</td>
<td>167</td>
</tr>
</tbody>
</table>

4.3 Discussion: Liveness

The trcPLCDpres property means that messages from the network are never delivered to the user application in an order that violates causality. Somewhat distressingly, however, this safety property is not particularly useful on its own, because it would also be true of an implementation in which no messages are ever delivered! A useful implementation is not only safe, but live, which in our case would mean that messages will not languish forever in the delay queue. As mentioned in Section 2.1, for our safety result we need not make any assumption of reliable message receipt, since we do not have to worry about the delivery order of messages that are never received. A proof of liveness, though, would need to rest on the assumption of a reliable message transport layer, that is, one in which sent messages are eventually received — albeit in arbitrary order and with arbitrarily long latency. Otherwise, a message could be stuck forever in the delay queue if a message that causally precedes it is lost, because it would never become deliverable. Proofs of liveness properties are considered “much harder” [Hawblitzel et al. 2015] than proofs of safety properties. While we do not offer any mechanized liveness proof, in the following case study section, we argue informally for the liveness of our implementation under the reliable message reception assumption.

5 CASE STUDY

In this section we describe a key-value store (KVS) application implemented in the architectural pattern depicted by Figure 6 which uses our causal broadcast library from Section 3. The KVS is an in-memory replicated data store consisting of message-passing nodes, each of which simultaneously serves client requests via HTTP. Section 5.1 covers the implementation of the KVS and demonstrates that it is not difficult to integrate our causal broadcast protocol with an application to obtain the benefits of causal broadcast. In particular, causal broadcast can be used to ensure causal
In Section 5.2 we describe how we deployed the KVS to a cluster of geo-distributed nodes and evaluated its performance.

5.1 Design and Implementation

We implemented the KVS using several commonly used Haskell libraries, such as servant to express HTTP endpoints concisely as types, stm to express multithreaded access to state, ekg to gather runtime statistics, and aeson to provide JSON (de)serialization. Clients may request to PUT a value at a key, DELETE a key-value pair specified by key, or GET the value corresponding to a specified key. Servers directly POST messages to each other to implement broadcast.

When a client requests to modify application state via PUT or DELETE, the server generates a KvCommand value to represent the update, where KvCommand is defined as follows:

```haskell
data KvCommand = KvPut Key Val | KvDel Key
```

Each server has application state represented by a Haskell Map, and causal broadcast process state (P r) where the type of raw message content is KvCommand, as defined by the following aliases:

```haskell
type KvState = Map Key Val
type NodeState = P KvCommand
```

With Figure 6 as a guide, we explain the KVS architecture as follows:

- Client requests to the PUT or DELETE endpoints call broadcast on the NodeState and the KvCommand value (represented by the yellow-orange arrows leaving “Application logic” in Figure 6) to generate a message of type M KvCommand and then (as required by broadcast) immediately apply the message to KvState before writing it to outbound queues for each other node. Since both KvState and the outbound queues are held in stm references, other threads waiting on the references wake up in response.
- The send mail background threads (represented by the yellow-orange arrows leaving “Application message transport” in Figure 6) wake up when any outbound queue is written to and coalesce multiple M KvCommand messages into a POST request to the other nodes in the causal broadcast cluster.
- Meanwhile, when a node makes a POST request with a M KvCommand value, the endpoint calls receive (represented by the blue-purple arrow leaving “Application message transport” in Figure 6) to inject the message into the delay queue within NodeState.
- Writing to NodeState wakes the read mail background thread which calls deliver (represented by the blue-purple arrow entering “Application state” in Figure 6), possibly removing a message from the delay queue and applying it to KvState.

Since messages received via the POST endpoint are from other nodes, deliver will return Nothing in cases where the causal dependencies of the message are not satisfied. Therefore all nodes (and hence all clients of those nodes) observe the effects of causally-related KvCommands in the same (causal) order. Were we to add indexing of values inserted with KvCommand and a richer query set to take advantage of the indexing, our key-value store could be easily extended to provide real utility in a production setting.

11 For simplicity, we adopt a “sticky sessions” model, in which a given client will only ever talk to a given server. In a setting where clients can communicate with more than one server, clients would need to participate in the propagation of causal metadata generated by the servers [Lloyd et al. 2011], whereas with sticky sessions, causal metadata is only exchanged among the servers.
5.2 Deployment and Evaluation

We deployed an eight-node KVS causal broadcast cluster, geo-distributed across AWS regions (two nodes in us-west-1 (N. California), one in us-west-2 (Oregon), two in us-east-1 (N. Virginia), one in ap-northeast-1 (Tokyo), two in eu-central-1 (Frankfurt)) and 24 client nodes with three clients assigned to each KVS node. All the nodes were AWS EC2 t3.micro instances with 2 vCPUs at 2.5 GHz and 1 GiB of memory. The 50th-percentile inter-region ping latencies vary from about 20ms between us-west-1 and us-west-2 to about 225ms between ap-northeast-1 and eu-central-1. Each of the eight nodes in the cluster ran an instance of our KVS application compiled with GHC 8.10.7.

We conducted a simple experiment in which each of the 24 clients made 10,000 curl requests at 20 requests per second to their assigned KVS replica in the same region (for a total of 240,000 client requests), uniformly distributed over GET, PUT, and DELETE requests. For PUT requests, we used randomly generated JSON data for values, and ensured that there were key collisions, requiring resolution by causal order, by drawing keys from among the lowercase ASCII characters. Using this experimental setup, we sought empirical answers to two questions:

- How fast does the KVS process requests?
- How often are messages queued for later delivery?

How fast does the KVS process requests? Two-thirds (160,000) of the 240,000 requests generated by clients were PUT and DELETE requests. Each resulted in a broadcast from the client’s assigned KVS replica to the seven other nodes in the cluster, generating 160,000 \(\times 7 = 1,120,000 \) unicast messages among the eight KVS nodes. To alleviate this message amplification and maintain throughput we sent multiple unicast messages in each request; typically, two or three messages were sent at a time. The KVS replicas handled all requests and delivered all messages in the time it took for clients to send them (10 minutes) with a load average of 0.10, indicating that the cluster was not CPU-bound and that no messages got stuck indefinitely in delay queues. As a static verification approach, Liquid Haskell itself imposes no running time overhead compared to vanilla Haskell, and no Liquid Haskell annotations were required in the KVS application code.

How often are messages queued for later delivery? We recorded the length of the delay queue after each message delivery and maintained an average. Over all nodes, the average length of the delay queue after a delivery came to 7.2 delayed messages. From prior experiments with a different mix of KVS nodes and clients, we observe that having more nodes in the causal broadcast cluster results in increased likelihood of messages being received out of causal order, motivating the need for causal broadcast.

6 RELATED WORK

Machine-checked correctness proofs of executable distributed protocol implementations. Much work on distributed systems verification has focused on specifying and verifying properties of models using tools such as TLA+ [Lamport 2002], rather than of executable implementations. Here, our focus is on mechanized verification of executable distributed protocol implementations.

Verdi [Wilcox et al. 2015] is a Coq framework for implementing distributed systems; verified executable OCaml implementations can be extracted from Coq. IronFleet [Hawblitzel et al. 2015] uses the Dafny verification language, which compiles both to verification conditions checked by an SMT solver and to executable code. Both Verdi and IronFleet have been used to verify safety properties (in particular, linearizability) of distributed consensus protocol implementations (Raft and Multi-Paxos, respectively) and of strongly-consistent key-value store implementations, and IronFleet additionally considers liveness properties. The ShadowDB project [Schiper et al. 2014] uses a language called EventML that inverts the extraction workflow used in a proof assistant like Coq or Isabelle: instead of first carrying out a proof in a proof assistant and then extracting an executable implementation, the programmer writes code in EventML, which compiles both
to a logical specification and to executable code that is automatically guaranteed to satisfy the specification, and correctness properties of the logical specification can then be proved using the Nuprl proof assistant. Schiper et al. [2014] used this workflow to verify the correctness of a Paxos-based atomic broadcast protocol. None of Wilcox et al., Hawblitzel et al., or Schiper et al. looked at causal broadcast or causal message ordering in particular.

Chapar [Lesani et al. 2016] presented a technique and Coq-based framework for mechanically verifying the causal consistency of distributed key-value store (KVS) implementations, with executable OCaml KVSes extracted from Coq. Lesani et al.’s verification approach effectively bakes a notion of causal message delivery into an abstract causal operational semantics that specifies how a causally consistent KVS should behave, then used the Chapar framework to check that a KVS implementation satisfies that specification. More recently, Gondelman et al. [2021] used the Coq-based Aneris separation logic framework [Krogh-Jespersen et al. 2020] to specify and verify the causal consistency of a distributed KVS and further verify the correctness of a session manager library implemented on top of the KVS. Both Lesani et al. and Gondelman et al. are specific to the KVS use case, whereas our verified causal broadcast implementation factors out causal message delivery into a separate layer, agnostic to the content of messages, that can be used as a standalone component in a variety of applications. Our Liquid Haskell implementation is also immediately executable Haskell, simplifying integration of the verified library with (potentially unverified) user application code, with no need for an extraction or compilation step, and Liquid Haskell’s SMT automation somewhat simplifies the proof effort. Unlike Lesani et al. and Gondelman et al., we did not attempt to verify the causal consistency of our KVS. However, we speculate that building on an underlying verified causal messaging layer would simplify the KVS verification task by separating lower-level message delivery concerns from higher-level application semantics.

Mechanized reasoning about causal consistency. One of the most important applications of causal broadcast is keeping distributed replicas of data causally consistent [Ahamad et al. 1995; Lloyd et al. 2011] across a number of nodes. Out of dozens of possible data consistency policies [Viotti and Vukolić 2016], causal consistency represents an appealing “sweet spot” in the consistency/availability trade-off space, letting replica states diverge when necessary to preserve availability while still ensuring that causal dependencies between operations are respected. Various SMT-powered verification tools [Gotsman et al. 2016; Sivaramakrishnan et al. 2015] enable automatically verifying that a given application invariant or operation contract holds under a given consistency policy, including causal consistency. Rather than verifying that causal consistency itself is satisfied, these approaches assume that the underlying data store provides a given consistency guarantee, and then prove that application-level invariants are satisfied.

Causal broadcast for CRDT convergence. Conflict-free replicated data types (CRDTs) [Shapiro et al. 2011a,b] are data structures designed for replication. Their operations must satisfy certain mathematical properties that can be leveraged to ensure strong convergence [Shapiro et al. 2011b], meaning that replicas are guaranteed to have equivalent state if they have received and applied the same unordered set of updates. While the simplest CRDTs ask little of the underlying messaging layer to ensure convergence, many CRDTs rely on causal delivery to ensure that, for example, a message that updates or deletes an element of a set will not be delivered before the message that inserts that element.

Gomes et al. [2017] use the Isabelle/HOL proof assistant [Wenzel et al. 2008] to implement and verify the strong convergence of several CRDTs, including RGA. To carry out the proof, they bake in causal delivery as an underlying assumption, modeled by the network axioms in their proof development. Therefore, for strong convergence to hold for an actual deployed implementation of Gomes et al.’s CRDTs, the deployment environment must provide causal delivery. Our work...
implements just such an environment, with its safety verified by Liquid Haskell. Thus our work is complementary to Gomes et al.’s: one could extract and deploy their verified-convergent CRDTs atop our verified-safe causal broadcast protocol to get an “end-to-end” convergence guarantee on top of a weaker network model that offers no causal delivery guarantee itself.

Liu et al. [2020] use Liquid Haskell to verify the convergence of several operation-based CRDT implementations. Their work differed from Gomes et al.’s in that it did not assume causal delivery, and therefore required less of the deployment environment than Gomes et al.’s CRDTs; on the other hand, it took a more strenuous implementation and verification effort, requiring on the order of thousands of lines of Liquid Haskell proofs for the more sophisticated CRDTs. In fact, Liu et al.’s verified two-phase map implementation included a “pending buffer” for updates that arrived out of order, and a collection of ad hoc, data-structure-specific rules to determine which updates should be buffered and which should be immediately applied. These mechanisms resemble the delay queue and the deliverable predicate, but are specific to a particular application-level data structure and use an ad hoc delivery policy, rather than operating at the messaging layer and using the more general principle of causal delivery. We hypothesize that our library would lessen the need for such ad hoc mechanisms and help simplify the implementation and verification of CRDTs.

Other applications of causal delivery. Aside from causally consistent data stores and convergent CRDTs, causal delivery is useful for applications that must detect whether a stable property [Chandy and Lamport 1985] holds of a distributed system. A stable property is a property that, once becoming true, remains true for the rest of an execution; examples of stable property detection include deadlock detection and termination detection. Causal delivery can simplify the implementation of such algorithms [van Renesse 1993]. Not unrelatedly, some snapshot algorithms for recording the global state of a distributed system [Acharya and Badrinath 1992; Alagar and Venkatesan 1994] rely on causal delivery, which simplifies their implementation compared to snapshot algorithms for systems that lack causal delivery support [Kshemkalyani et al. 1995].

Foundational work on causal delivery. We implemented and mechanically verified the causal broadcast protocol proposed by Birman et al. [1991]. The notion of causal delivery and a protocol for causal broadcast was originally proposed by Birman and Joseph [1987b], although this earlier design required messages to include a copy of every causally preceding message, necessitating a garbage-collection mechanism to clean up extra message metadata. Schiper et al. [1989] proposed a more general protocol that ensures causal delivery of point-to-point messages in addition to broadcast messages. All these papers give relatively informal proofs or proof sketches to aid intuition about the correctness of their protocols.

7 CONCLUSION
Causal message broadcast is a widely used building block of distributed applications, motivating the need for practically usable verified implementations. We have presented a verified executable causal broadcast library implemented using Liquid Haskell, which enables proofs to be carried out directly in Haskell, with no need for subsequent transformation or extraction steps. To verify the correctness of our implementation, we define process-local causal delivery (PLCD), a property that is locally checkable at each process. We identify design choices that make a standard causal broadcast protocol amenable to verification of PLCD; and we mechanically verify that the PLCD property holds for processes running our implementation of the protocol, resulting in what is to our knowledge the first executable verified implementation of a causal broadcast protocol. Our verified library is of immediate use in real distributed systems written in Haskell. We evaluated its utility with a case-study application of a distributed in-memory key-value store.
REFERENCES

Verified Causal Broadcast with Liquid Haskell

