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1 Introduction

Today’s most important computer systems are distributed systems: those that consist of multiple machines that
communicate by sending messages over a network, and where individual machines or network connections may
fail independently. Programming such systems is hard due to messages being reordered or delayed and the pos-
sibility of machines and network connections failing. Liveness guarantees (such as “messages are eventually re-
ceived”) may be impossible in such a setting — for instance, distributed consensus protocols such as Paxos [31, 32]
are infamous for their lack of any termination guarantee [21] — and even safety properties (such as “received
messages arrive in the order they were sent”) can be challenging to prove. Distributed algorithms must be im-
plemented in a defensive way to account for failures, and such designs are often expensive in terms of network
bandwidth and storage space requirements; system designers may trade off fault tolerance along one or another
dimension in exchange for efficiency. Furthermore, fault-tolerant systems hide their own bugs by nature [15],
making them especially challenging to debug. Designers and implementers of distributed algorithms lack robust
tools for reasoning about these trade-offs and challenges in real implementations, and for ensuring that those
implementations satisfy the safety and liveness properties expected of them. The result is that, while protocols
that ensure, say, a given message delivery order or a given data consistency policy are widely used in distributed
systems, verification of the correctness of those protocols is less common, much less machine-checked proofs
about executable implementations. The goal of this project is to mechanically verify real, executable imple-
mentations of distributed systems, using rich verification capabilities integrated into a general-purpose,
industrial-strength programming language.

Why are existing approaches insufficient? For a verification approach to be practical and usable, we want
to carry out verification directly in the same industrial-strength executable programming language used for im-
plementation, with no subsequent transformation or extraction step necessary. Unfortunately, most existing
approaches to distributed systems verification lack support for such a workflow:

• Modeling languages such as TLA+ [33] let designers and implementers write, test, and in some cases prove
properties about models (i.e., executable specifications) of distributed systems. While the model can inform
the development of the running implementation and is a useful design tool, there is no formal link between
a model and a production implementation.

• Verification-aware languages such as Dafny [34] integrate a programming language with an Satisfiability
Modulo Theories (SMT)-based program verifier. They let programmers specify pre- and postconditions of
functions, as well as loop invariants, and can automatically check whether they hold. However, they lack the
rich ecosystem of libraries and tools, and sometimes the attention to efficiency, that an industrial-strength
general-purpose programming language has, making them impractical as an implementation language for
real-world distributed systems.

• Proof assistants such as Coq [9], Agda [46], and Isabelle [72] let programmers implement a system within the
proof assistant, prove properties, and then extract a verified executable implementation. A great advantage
of these tools is that they (together with IDE support) provide excellent visibility into the state of an in-
progress proof, helping the user understand what work remains to be done to complete the proof. However,
the extraction process can be brittle and the extracted code can be difficult to integrate with libraries in
the target language in a way that is both performant and not disconnected from the proofs. An additional
issue is that a lack of SMT automation, like that offered by tools like Dafny, can make proofs more tedious
and verbose than necessary.
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For distributed systems in particular, there has also been much recent interest in SMT-solver-aided tool sup-
port (e.g., [6, 60, 24, 43]) for specifying and verifying particular correctness properties – for example, ensuring
that no execution will violate a given policy specifying the consistency of replicated data. However, while these
tools are useful, they do not entirely bridge the gap between specification and verified implementation. Design-
ers of SMT-aided tools must walk a fine line between keeping the tool useful and usable for the programmer and
keeping the analysis tractable for the solver. One way to ensure tractability is for the tools to operate on logical
specifications [24, 43], designed to correspond to the first-order logic theories that SMT solvers support, rather
than on executable code, resulting in a gap between the verified specification and the code that actually runs.
If there is executable code involved [6, 60], there is no formal link between the specifications and the code. For
example, a tool might report that it is safe to run program P with specification SP against data store D with
specification SD, but the check only takes the specifications SP and SD into account; there is no checking that
P indeed abides by SP or D by SD.

1.1 Research Plan

This project’s approach to language-level distributed systems verification centers around refinement types [53, 75],
data types that let programmers specify logical predicates that restrict, or refine, the set of values described by a
type, and that can be checked by an off-the-shelf SMT solver. This mechanism is beginning to make its way into
general-purpose, industrial-strength programming languages through tools such as Liquid Haskell [67], an exten-
sion to the Haskell programming language that adds support for refinement types. Conceptually, Liquid Haskell is
a kind of hybrid of SMT-based program verifiers such as Dafny [34] and dependent-types-based interactive proof
assistants such as Agda or Coq that leverage the Curry-Howard correspondence. Beyond giving more precise types
to individual functions, Liquid Haskell’s reflection [68, 69] facility lets programmers use refinement types to spec-
ify arbitrary “extrinsic” properties that can relate multiple functions, and then prove those properties by writing
Haskell programs to inhabit the specified refinement types (see §2.1). Unlike Dafny (and its cousin F* [62, 41]),
Liquid Haskell’s integration with an existing programming language lets programmers work with pre-existing
Haskell code and gradually port to Liquid Haskell, adding richer specifications to code as they go. Furthermore,
verified Liquid Haskell libraries can be used directly in arbitrary Haskell programs, letting programmers seamlessly
take advantage of formally-verified components from unverified code written in an industrial-strength, general-
purpose language. The close integration with Haskell means that Liquid Haskell requires no extraction step (but
also, no contortions to use Haskell’s limited native support for dependent types [37]). In preliminary work, the PI
and collaborators have used Liquid Haskell (§2.1) to verify the convergence of replicated data structures used for
distributed programming (§2.2).

This project seeks to advance the state of the art of mechanized verification of distributed system implemen-
tations using refinement types, via two interrelated research thrusts:

• Thrust 1: Verified Libraries for Distributed Systems (§3.1). The PI and team will use Liquid Haskell to
implement the firstmechanically verified executable library for causalmessage delivery, a foundational
building block of distributed systems (Task 1; §3.1.1). We will then use this verified causal message deliv-
ery layer to implement verified libraries of conflict-free replicated data types (CRDTs) (Task 2; §3.1.2)
and verified causally-consistent distributed data stores (Task 3; §3.1.3). Central to this research thrust
is the concept of modular verification of each of these components. While executable verified causally-
consistent data stores have been implemented before using a proof assistant extraction approach [36], and
the PI’s previous work [38] investigated CRDT convergence verification with Liquid Haskell, these previous
verification efforts weremonolithic in nature rather than building on an underlying verified messaging layer.
The PI’s proposed approach separates lower-level message delivery concerns from higher-level application
semantics, and separately-verified components can be plugged together to get an end-to-end correctness
guarantee. Our hypothesis is that higher-level consistency (Task 2) or convergence (Task 3) properties can
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Figure 1: Overview of the research plan.

be more easily verified for applications that are built on top of a verified causal messaging layer (Task 1)
than for monolithically implemented applications.

• Thrust 2: Hybrid Tools for Verifying Distributed Systems (§3.2). Dependent-type-based verification
tools like Agda and refinement-type-based verification tools like Liquid Haskell each have usability advan-
tages and disadvantages for distributed systems verification. In this thrust, the PI and team will explore
ways to select the strengths of the two verification approaches by developing a hybrid approach. On the one
hand, since some data types are easier to express and work with as SMT-decidable refinement types than
as their dependently-typed, inductively defined counterparts, we will investigate integrating refinement
types into Agda (Task 4; §3.2.1). On the other hand, to provide better visibility into in-progress proof
state, we will investigate improving the interactivity of Liquid Haskell by extending it with support for
typed holes [22], a feature inspired by Agda (Task 5; §3.2.2). More broadly, these efforts suggest that there
is no hard boundary between interactive and automatic theorem proving; rather, there is a multidimen-
sional spectrum of approaches, with different tools providing varying degrees of tightness of the human
feedback loop and of granularity of feedback — as well as other possible axes of differentation. Therefore
this research thrust will culminate with comprehensively surveying and mapping the space of hybrid
verification tools (Task 6; §3.2.3).

Figure 1 shows an overview of the proposed research plan. Within Thrust 1, Tasks 2 and 3 build on Task 1.
Within Thrust 2, Task 6 builds on Tasks 4 and 5. Thrusts 1 and 2 are interrelated: the experience gained from
the verification work in Thrust 1 will inform the design and implementation of the tools in Thrust 2, and the
implementation of the tools in Thrust 2 will in turn aid the verification work in Thrust 1.

1.2 Education and Outreach Plan

As a field, distributed systems is both immediately practical and useful to students, and brimming with profound
theoretical results. Yet distributed systems courses are often not offered at the undergraduate level, and the
community has not converged on a standard undergraduate-level textbook, instead often opting to teach out of
academic research papers [1]. Unsurprisingly, many undergraduate students (as well as industry practitioners)
suffer from a lack of approachable distributed systems study materials. For would-be researchers (and would-be
industrial consumers of distributed systems verification research), even less of an on-ramp exists.

The goal of the PI’s education and outreach plan (described in detail in §4) is to create approachable entry
points to distributed systems verification research, aimed in particular at undergraduate students and industry
practitioners. The PI will create a new series of public-facing live online video broadcasts and recordings focusing
on distributed systems verification, building on her existing experience creating publicly available distributed sys-
tems educational broadcasts and videos. Furthermore, the PI and team will create and distribute a series of zines
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(short, self-published, and often hand-drawn and hand-illustrated pamphlets) about distributed systems research
topics. There is a rich history of using zines for scientific communication (a recent example is the NSF-supported
EPiQC project’s zines about quantum computing [64]), and the PI has previously used zines as a teaching tool in
her distributed systems courses. However, we do not only want students to read zines: as part of this project,
the PI will integrate zine creation into the curriculum of her courses and subsequently into her team’s research
process by recruiting undergraduate students for summer research assistantships to create zines about the team’s
work. The student-created zines will be freely available online and will serve as instructional content in the PI’s
(and others’) future courses as well as as an approachable introduction to the team’s research. Moreover, the zine
creation process itself will help students solidify their knowledge, develop their scientific and technical commu-
nication skills, and help integrate them into the broader research community.

1.3 Broader Impacts

People rely on complex distributed software systems in many aspects of their day-to-day professional and per-
sonal lives, from email and file sharing to videoconferencing, online gaming and more, and bugs in such systems
have considerable economic consequences [65, 74]. In addition to fostering cross-pollination between the pro-
gramming languages, software verification, and distributed systems communities, the proposed research aims to
improve the overall trustworthiness and reliability of these systems. This project will provide verified, immediately
executable implementations of widely used protocols and applications and release them as open source software
artifacts. The educational component of our proposal will involve undergraduate students in cutting-edge re-
search and give them an entry point to the broader research community, and the artifacts produced will be freely
available online and will fill an growing need for distributed systems educational materials that are approachable
both for students and for industry practitioners.

2 Background and Preliminary Work

This section gives a brief overview of refinement types and Liquid Haskell, and introduces the PI’s preliminary
work on distributed systems verification using Liquid Haskell.

2.1 Background: Refinement Types and Liquid Haskell

Refinement types [53, 75] let programmers specify data types augmented with logical predicates, called refinement
predicates, that restrict the set of values that can inhabit the type. Depending on the expressivity of the language
of refinement predicates, programmers can specify rich program properties using refinement types, sometimes
at the expense of the decidability of type checking. Liquid Haskell avoids that problem by restricting refine-
ment predicates to an SMT-decidable logic [52, 67]. For example, in Liquid Haskell we could define the type of
even integers by refining the Haskell type Int using the refinement type { v:Int | v mod 2 == 0 }, where
v mod 2 == 0 is the refinement predicate and v:Int binds the name v for values of type Int that appear in the
refinement predicate. One could define an analogous refinement type for odd integers, and then write a Liquid
Haskell function for adding them:

type EvenInt = { v:Int | v mod 2 == 0 }

type OddInt = { v:Int | v mod 2 == 1 }

oddAdd :: OddInt -> OddInt -> EvenInt

oddAdd x y = x + y

The type OddInt of the arguments to oddAdd expresses the precondition that x and y will be odd, and the return
type EvenInt expresses the postcondition that x + ywill evaluate to an even number. Liquid Haskell automatically
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proves that such postconditions hold by generating verification conditions that are checked at compile time by
the underlying SMT solver, Z3 [17]. If the solver finds a verification condition to be invalid, typechecking fails. If
the return type of oddAdd had been OddInt, for instance, the above code would fail to typecheck.

Aside from preconditions and postconditions of individual functions, Liquid Haskell makes it possible to verify
extrinsic properties that are not specific to any particular function’s definition. For example, the type of sumOdd
below expresses the extrinsic property that the sum of an odd and an even number is an odd number:

sumOdd :: x : OddInt -> y : EvenInt -> { _:Proof | (x + y) mod 2 == 1 }

sumOdd _ _ = ()

Here, sumOdd is a Haskell function that returns a proof that the sum of x and y is odd. (In Liquid Haskell, Proof is
a type alias for Haskell’s () (unit) type.) Because the proof of this particular property is easy for the SMT solver to
carry out automatically, the body of the sumOdd function need not say anything but (). In general, however, pro-
grammers can specify arbitrary extrinsic properties in refinement types, including properties that refer to arbitrary
Haskell functions via the notion of reflection [68]. The programmer can then prove those extrinsic properties by
writing Haskell programs that inhabit those refinement types, using Liquid Haskell’s provided proof combinators
— with the help of the underlying SMT solver to simplify the construction of these proofs-as-programs [69, 68].

Liquid Haskell thus occupies a unique position at the intersection of SMT-based program verifiers such as
Dafny [34], and proof assistants that leverage the Curry-Howard correspondence such as Coq [9] and Agda [46].
A Liquid Haskell program can consist of both application code like oddAdd (which runs at execution time, as
usual) and verification code like sumOdd (which only “runs” at compile time), but, pleasantly, both are just Haskell
programs, albeit annotated with refinement types. Being based on Haskell enables programmers to gradually port
code from vanilla Haskell to Liquid Haskell, adding richer specifications to code as they go. Furthermore, verified
Liquid Haskell libraries can be used directly in arbitrary Haskell programs, letting programmers take advantage of
formally-verified components from unverified code written in an industrial-strength, general-purpose language.

Finally, unlike with a traditional proof assistant such as Coq or Agda, which requires an executable implemen-
tation to be extracted from the code written in the proof assistant’s vernacular language, Liquid Haskell enables
proving properties both in and about the code to be executed, resulting in immediately executable verified code with
no need for a further extraction step.

2.2 Preliminary Work: Verified Conflict-Free Replicated Data Types with Liquid Haskell

In prior work [38], the PI and collaborators have used Liquid Haskell to develop a framework for programming
distributed applications based on conflict-free replicated data types (CRDTs). Data replication is ubiquitous in dis-
tributed systems to guard against machine failures and keep data physically close to clients who need it, but it
introduces the problem of keeping replicas consistent with one another in the face of network partitions and un-
predictable message latency. CRDTs [59, 58, 51] are data structures whose operations must satisfy certain mathe-
matical properties that can be leveraged to ensure strong convergence [59], meaning that replicas are guaranteed to
have equivalent states given that they have received and applied the same unordered set of update operations. For
example, consider an CRDT representing the contents of a shopping cart, replicated across data centers in Seat-
tle, Frankfurt, Mumbai, and Tokyo for fault tolerance and data locality. Due to network partitions and message
latency, updates to the cart’s contents may arrive in an arbitrary order at each data center, but strong convergence
ensures that under reliable message delivery assumptions, the replicas will eventually agree.

We used Liquid Haskell to prove strong convergence for several Haskell CRDT implementations (e.g., mul-
tisets, two-phase maps [59], causal trees [25]). In our proof development, the strong convergence of a repli-
cated data structure depends on a proof of the commutativity of the operations that the data structure provides.
Given such a commutativity proof, the rest of the reasoning to get strong convergence can be independent of
the specifics of the data structure. We were therefore able to state and prove the strong convergence property at

5



the level of a generic interface in Liquid Haskell (that is, a Haskell type class), and then plug in a data-structure-
specific commutativity proof for each CRDT we wanted to verify. Carrying out the proof in this modular fashion
required us to extend Liquid Haskell to add the ability to state and prove properties at the type class level, itself
a nontrivial task. We defined a CRDT as the below Liquid Haskell type class VRDT, and the required mathematical
properties of a CRDT are expressed extrinsically as methods lawCommut and lawCompatCommut:

class VRDT t where

type Op t

apply :: t -> Op t -> t

compat :: Op t -> Op t -> Bool

compatS :: t -> Op t -> Bool

lawCommut :: x : t -> op1 : Op t -> op2 : Op t

-> { _: Proof | (compat op1 op2 && compatS x op1 && compatS x op2)

=> (apply (apply x op1) op2 = apply (apply x op2) op1

&& compatS (apply x op1) op2) }

lawCompatCommut :: op1 : Op t -> op2 : Op t -> {_:Proof | compat op1 op2 = compat op2 op1}

This type class-based approach let us state and prove in Liquid Haskell a strong convergence property that applies
to any VRDT instance. Despite the modularity enabled by type classes, though, each CRDT we considered required
monolithic proofs of lawCommut and lawCompatCommut, requiring on the order of thousands of lines of Liquid
Haskell code (and hours of solver time) for the more sophisticated CRDTs [38, Table 3]. In fact, to our knowledge,
this is the largest Liquid Haskell proof development to date — which is not necessarily something to be proud
of! The strenuous verification effort suggests that for distributed applications of this nature, a modular approach
that separates lower-level message delivery concerns from higher-level data structure semantics is called for.
Moreover, our experience carrying out large-scale proofs in Liquid Haskell highlights the need for usable hybrid
verification tools that integrate solver automation with visibility into the in-progress proof state. Thrust 1 and
Thrust 2 of the proposed research plan, discussed in the following section, will address these respective needs.

3 Research Plan

3.1 Thrust 1: Verified Libraries for Distributed Systems

In this Thrust, the PI and team will tackle verification of three representative distributed applications: a causal
message delivery protocol, conflict-free replicated data types, and causally consistent data stores.

3.1.1 Task 1: Verified Causal Message Delivery

Protocols to ensure that messages are delivered in causal order [10, 12, 54, 13, 11] are a ubiquitous building block
of distributed systems. A causal delivery protocol ensures that when a message m is delivered to a process p, any
message sent “before” m (in the sense of Lamport [30]’s “happens-before”) will have already been delivered to p.
When a mechanism for causal message delivery is available, it simplifies the implementation of many important
distributed algorithms, such as replicated data stores that must maintain causal consistency [3, 39], replicated
data types [59], distributed snapshot protocols [2, 4], and applications that “involve human interaction and consist
of large numbers of communication endpoints” [66]. While causal message delivery protocols are widely used in
distributed systems, verification of the correctness of those protocols is less common, much less machine-checked
proofs about executable implementations.

What can go wrong in the absence of causal delivery? Suppose Alice, Bob, and Carol are exchanging group
text messages. Alice sends the message “I lost my wallet...” to the group, then finds the missing wallet and follows
up with a “Found it!” message to the group. In this situation, depicted in Figure 2 (left), Alice has a reasonable
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Figure 2: Two examples of executions that violate causal delivery.

expectation that Bob and Carol will see the messages in the order that she sent them, and such first-in first-out
(FIFO) delivery is an aspect of causal message ordering. While FIFO delivery is already enforced1 by standard
networking protocols such as TCP [49], it is not enough to eliminate all violations of causality. In an execution
such as that in Figure 2 (right), FIFO delivery is observed, and yet Carol sees Bob’s message only after having seen
Alice’s initial “I lost my wallet...” message, so from Carol’s perspective, Bob is being rude. The issue is that Bob’s
“Glad to hear it!” response causally depends on Alice’s second message of “Found it!”, yet Carol sees “Glad to hear
it!” first. What is called for is a mechanism that will ensure that, for every message that is applied at a process, all
of the messages on which it causally depends — comprising its causal history — are applied at that process first,
regardless of who sent them.

A causal broadcast protocol [12, 11] addresses the problem by buffering messages at the receiving end until all
causally preceding broadcast messages have been applied. Imagine a “mail clerk” at each process that intercepts
incoming messages, and chooses whether, and when, to deliver each one (by handing it off to the above application
layer and recording that it has been delivered), or buffer it for possible later delivery. The dashed arrows in Figure 2
represent the behavior of such a buffering mechanism. A typical implementation strategy is to have the sender
of a message augment the message with metadata (for instance, a vector clock [42, 20, 56]) that summarizes that
message’s causal history in a way that can be efficiently checked on the receiver’s end to determine whether the
message needs to be buffered or can be applied immediately to the receiver’s state. Although such mechanisms
are well-known in the distributed systems literature [10, 12, 11], their implementation is “generally very delicate
and error prone” [14], motivating the need for machine-verified implementations of causal delivery mechanisms
that are usable in real, running code.

For this Task, the PI and team will implement a standard causal broadcast protocol (e.g., Birman et al.’s CB-
CAST protocol [11]) in Haskell, and use Liquid Haskell to express and mechanically prove a causal delivery prop-
erty: messages can never be delivered to a process in an order that violates causality. In particular, an execution
observes causal delivery if, for all messages m and m′, for all processes p delivering both m and m′,

m → m′ =⇒ deliverp(m) →p deliverp(m
′)

where → is Lamport’s happens-before relation [30], deliverp is a message delivery event on p, and →p is the total
order of events on p. The behavior of our notional “mail clerk” is implemented by a predicate deliverable that

1TCP’s FIFO ordering guarantee applies so long as the messages in question are sent in the same TCP session. For cross-session
guarantees, additional mechanisms are necessary.
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takes as arguments a message m and a process p, returning true if m can be delivered at p without causing a
causality violation, and false otherwise. Our proof will establish the properties that must hold of any implemen-
tation of deliverable to ensure causal delivery of executions.

We will express this safety property using refinement types and prove that it holds using Liquid Haskell’s
theorem-proving facilities. For example, the following is a Liquid Haskell specification of a property that says
that, if a message m2 is deliverable at a given process p, then any causally preceding message m1 is guaranteed to
already have been delivered at p. This property is expressed as the refinement type of a function:

causalSafety

:: p : Process -> m1 : Message -> m2 : Message

-> { _:Proof | deliverable m2 p } -> { _:Proof | causallyBefore m1 m2 }

-> { _:Proof | delivered m1 p }

In the causalSafety property above, the refinement type { _:Proof | deliverable m2 p } is the type of a
Liquid Haskell proof that m2 is deliverable at p, where the occurrence of deliverable in the refinement refers
not to a specification, but to the actual implementation of deliverable that is called at run time. It appears in
the type of causalSafety via Liquid Haskell’s refinement reflection mechanism that lets arbitrary (terminating)
Haskell function calls appear in refinement predicates [68]. The types { _:Proof | causallyBefore m1 m2 }

and { _:Proof | delivered m1 p } can likewise refer to running code. The programmer can then prove that
causalSafety holds by inhabiting its type with a program, using Liquid Haskell’s proof combinators [69].

The contribution of this Task will be, to our knowledge, the first formally verified executable causal broadcast
library. Importantly, this verification approach is agnostic to the content of messages, enabling a variety of appli-
cations to be built on top of the underlying causal message delivery layer in a modular fashion. These applications
can then leverage the causal delivery guarantee to establish higher-level, application-specific guarantees, such as
convergence of CRDTs and causal consistency of distributed data stores, as we will see in the following two Tasks.

Related work. Much work on specification and verification of distributed systems has focused on specifying and
verifying properties of models using tools such as TLA+ [33], rather than of executable implementations. The state
of the art for machine-checked correctness proofs of executable distributed protocol implementations includes
Verdi [73], IronFleet [26] and ShadowDB [55]. Verdi [73] is a Coq framework for implementing distributed systems;
verified executable OCaml implementations can be extracted from Coq. IronFleet [26] uses the Dafny verification-
aware language, which compiles both to verification conditions checked by an SMT solver and to executable code.
Both Verdi and IronFleet have been used to verify safety properties (in particular, linearizability) of distributed
consensus protocol implementations (Raft and Multi-Paxos, respectively) and of strongly-consistent key-value
store implementations, and IronFleet additionally considers liveness properties. The ShadowDB project [55] uses
a language called EventML that inverts the extraction workflow used in a proof assistant like Coq or Isabelle:
instead of first carrying out a proof in a proof assistant and then extracting an executable implementation, the
programmer writes code in EventML, which compiles both to a logical specification and to executable code that is
automatically guaranteed to satisfy the specification, and correctness properties of the logical specification can
then be proved using the Nuprl proof assistant. Schiper et al. [55] used this workflow to verify the correctness of
a Paxos-based atomic broadcast protocol. None of these projects looked at causal broadcast or causal message
ordering in particular.

3.1.2 Task 2: Verified CRDTs, Simply

As discussed earlier in §2.2, the PI and collaborators’ preliminary work on CRDT verification [38] used Liquid
Haskell to verify the convergence of several CRDT implementations, based on proving that their operations com-
mute. CRDTs implemented in an operation-based style [59, 23] — as all those we considered were — typically re-
quire the existence of an underlying causal broadcast mechanism to deliver updates to replicas, following Shapiro
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et al. [59, §2.4]. Further, Shapiro et al. [59] assume (reasonably!) that any preconditions that must be satisfied
to enable an operation’s execution (e.g., that a key must already be present in a dictionary if its value is to be
updated) are already ensured by causal delivery.

This preliminary work, however, did not assume causal message delivery, which significantly complicated
the implementation and verification effort. For example, our implementation of the two-phase map CRDT (a
dictionary-like container type) had a “pending buffer” for updates that arrived out of order, and a collection of ad
hoc, data-structure-specific rules to determine which updates should be buffered and which should be immedi-
ately applied. We observe that these mechanisms — which we were obliged to include to make our commutativity
proof go through — resemble the delayed message buffer and the deliverable predicate used in standard im-
plementations of causal broadcast, in e.g., Birman et al. [11]’s CBCAST protocol, but are specific to a particular
application-level data structure and use an ad hoc delivery policy, rather than operating at the messaging layer and
using the more general principle of causal delivery. We hypothesize that the separately-verified causal broadcast
implementation of Task 1 would obviate the need for such ad hoc mechanisms and simplify the implementation
and verification of CRDTs. For this Task, the PI and team will implement a library of verified-convergent CRDTs
on the basis of the verified causal delivery library of Task 1. Our aim is to demonstrate that with this modular
verification approach, the total amount of Liquid Haskell code necessary to verify CRDT convergence is an order
of magnitude less than was required for our preliminary work.

Related work. Gomes et al. [23] use the Isabelle/HOL proof assistant [72] to implement and verify the strong
convergence of several operation-based CRDTs. To carry out the proof, they bake in causal delivery as an underly-
ing assumption, modeled by the “network axioms” in their proof development. Therefore, for strong convergence
to hold for an actual deployed implementation of Gomes et al.’s CRDTs, the deployment environment would need
to provide causal delivery. The work of Task 1 will implement just such an environment, with its safety verified by
Liquid Haskell. Therefore, we plan to deploy the verified-convergent CRDTs of Task 2 atop the verified-safe causal
broadcast protocol of Task 1 to get an “end-to-end” guarantee on top of a weaker network model that offers no
causal delivery guarantee itself. Our verified CRDTs will also be immediately executable thanks to Liquid Haskell,
unlike Gomes et al.’s, which would require an extraction step.

Zeller et al. [77] specify and prove convergence for a variety of state-based counter, register, and set CRDTs
using Isabelle, while Nair et al. [44] present an automatic, SMT-based verification tool for specifying state-based
CRDTs and verifying application-level properties of them. Neither Zeller et al. nor Nair et al. consider operation-
based CRDTs, our focus here. Nagar and Jagannathan [43] address the question of automatically verifying strong
convergence of various operation-based CRDTs (sets, lists, graphs) under different consistency assumptions pro-
vided by the underlying data store. Their CRDT specifications are not executable implementations, but written
in an abstract specification language amenable to SMT solving, whereas our proposed verified CRDTs will be ex-
ecutable Haskell implementations and directly usable in real applications.

3.1.3 Task 3: Verified Causally Consistent Data Stores

The causal delivery library proposed for Task 1 is good for more than just CRDTs. A particularly compelling ap-
plication is to use causal delivery to ensure causal consistency [3, 39] of data across a number of replicas. Out of
dozens of distributed data consistency policies found in the literature [70], causal consistency represents an ap-
pealing “sweet spot” in the consistency/availability trade-off space, letting replica states diverge when necessary
to preserve availability [40] while still ensuring that causal dependencies between operations are respected.

For this Task, the PI and team will build on the verified causal message delivery protocol of Task 1 to imple-
ment a verified, executable causally-consistent data store. Figure 3 shows an example application architecture
for our proposed data store. A collection of (potentially geo-distributed) peer nodes, which we call the cluster,
each run a causal broadcast protocol, along with application code that implements the data store. Clients of the
data store communicate read and write requests to the nodes of the cluster; one or more clients may communicate
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Figure 3: Architectural diagram of a causally-consistent data store implemented using a causal broadcast library.
Each node is responsible for broadcasting messages to the other nodes in the cluster. Each of the nodes can
support multiple clients.

with each node. The application instance on a node generates messages, broadcasts them to other nodes in the
cluster, and delivers messages received from other nodes.

Verifying causal consistency of our data store will leverage the causal message delivery result of Task 1. How-
ever, causal consistency does not immediately follow from causal delivery at each of the nodes. For example,
proving causal consistency will also require ensuring, via refinement types, that read and write operations on
the data store are carried out in a total order per node (although, importantly, not necessarily a global total or-
der). Furthermore, causal consistency requires the participation of clients to propagate causal metadata between
each read and write operation, or else that clients be “sticky” to a particular cluster node [47]. We will use Liquid
Haskell’s refinement types to precisely express the behaviors required of both the data store application and of
clients to preserve causal consistency.

Related work. Various SMT-powered verification tools [60, 24, 27] enable automatically verifying that a given
application invariant or operation contract holds under a specified consistency policy, including causal consis-
tency. However, rather than verifying that causal consistency itself is satisfied, these tools determine whether
or not it is safe to execute a given operation under the assumption that that a given consistency policy is satis-
fied, or whether or not an application-level invariant will be satisfied given the consistency policies satisfied by
individual operations. The goals of these lines of work are therefore complementary to ours: we prove a property
that such tools could then leverage as an assumption to prove application-level properties, e.g., that a replicated
bank account never has a negative balance. (Of course, it would also be possible to prove such application-level
properties directly in Liquid Haskell as well.)

Chapar [36] presented a technique and Coq-based framework for mechanically verifying the causal consis-
tency of distributed key-value store (KVS) implementations, with executable KVSes extracted from Coq. Lesani
et al.’s approach effectively bakes a notion of causal message delivery into an operational semantics that specifies
how a causally consistent KVS should behave. Lesani et al. then use the Chapar framework to check that a KVS
implementation satisfies that specification. The executable KVSes extracted from Chapar can safely run on top
of a messaging layer that does not provide causal delivery. Chapar is a monolithic implementation specific to the
KVS use case, whereas our proposed approach factors out causal message delivery into a separate layer, agnostic
to the content of messages. As with Task 2, we hypothesize that our modular approach will simplify the verifica-
tion of the data store compared to the Chapar approach. Finally, another advantage of our proposed approach is
that it is immediately executable code, with no need for an extraction step.
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3.2 Thrust 2: Hybrid Tools for Verifying Distributed Systems

In this Thrust, the PI and team will turn their attention from applications to the verification tools themselves.
Dependent-type-based verification tools like Agda and refinement-type-based verification tools like Liquid Haskell
each have advantages and disadvantages. The PI and team propose to develop a hybrid approach that combines
the strengths of the existing tools.

3.2.1 Task 4: Integrating Refinement Types in Agda

Liquid Haskell’s SMT automation makes some oft-used data types easier to work with than they are in traditional
proof assistants, such as Agda [46], that lack such automation. A simple example is Fin n, the type of finite sets
with n elements. In the Agda standard library, Fin n is inductively defined [45]:

data Fin : N → Set where

zero : {n : N} → Fin (suc n)

suc : {n : N} (i : Fin n) → Fin (suc n)

Agda code that operates on expressions of type Fin n must handle both the zero case and the suc case, leading
to verbose proofs. However (as noted in a comment in the same Agda standard library file), elements of Fin n

can be seen as natural numbers in the set {m | m < n}, which is precisely what the corresponding refinement
type looks like in Liquid Haskell:

type Fin N = { m : Nat | m < N }

Such types are useful for implementing verified distributed systems. For example, a vector clock [42, 20, 56], which
is a type of logical clock that plays a central role in causal delivery protocols [11], is a vector of natural numbers
of lengthN , whereN is the number of processes participating in the system.2 A vector clock index of type Fin n

is therefore guaranteed to never index out of bounds — an extremely useful property. But the inductive style of
the Fin n definition in Agda makes the data structure more tedious to work with, whereas in Liquid Haskell, the
underlying solver’s built-in theory of natural numbers makes such verbosity unnecessary.

Based on this observation, for this Task, the PI and team will explore adding support for Liquid-Haskell-style
refinement types to Agda. Aside from being useful to the Agda community broadly, we hypothesize that adding
refinement types to Agda could actually benefit the process of developing Liquid Haskell proofs. This is because,
since Agda offers more visibility than Liquid Haskell into the in-progress proof state; a workflow that the PI and
team have found useful in our preliminary work is to carry out a proof in Agda first, then port it to Liquid Haskell.3

Refinement types in Agda could streamline this workflow by enabling more straightforward translation of proofs
from Agda to Liquid Haskell.

Related work. Schmitty [71] is a project to provide bindings for SMT-LIB [8] (the common input language used
by all mainstream SMT solvers) in Agda, and integrate those bindings via Agda’s reflection mechanism, enabling
automatic proving. Schmitty works by translating Agda propositions to SMT-LIB in accordance with the current
theories loaded, and passing the resulting script to the SMT solver. Schmitty is currently under active develop-
ment and depends on features in an as-yet-unreleased version of Agda. We hypothesize that, based on Schmitty,
we could provide a basic notion of refinement types in Agda, and the PI and team are in active discussions with

2Like other logical clocks, vector clocks do not track physical time (which would be problematic in distributed computations that lack a
global physical clock), but instead track only the order of events in an execution. Vector clocks provide a lightweight way for each process
to keep track of how many messages it has seen and from whom they were sent, and for message senders to transmit information about
the causal dependencies of each message along with the message.

3Thanks to reflection and SMT automation, we find that proofs typically get shorter when ported from Agda to Liquid Haskell, but Agda
nevertheless aids in developing the proof in the first place.
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the Schmitty developers about this possibility. A related project is SMTCoq [19], a Coq plug-in that enables com-
munication with external SMT solvers.

Previous work by Atkey et al. [5] and Sekiyama et al. [57] has explored formalizing the relationship between
data types such as the two alternate definitions of Fin n above. A promising approach is to leverage our un-
derstanding of these relationships to automatically translate types from standard Agda to Agda-extended-with-
refinement-types in a semantics-preserving fashion, and then to Liquid Haskell.

3.2.2 Task 5: Improving the Interactivity of Liquid Haskell

Currently, a downside of Liquid Haskell for proof development is that it offers much less visibility into the in-
progress proof state than tools such as Agda or Coq do. Currently, Liquid Haskell provides only coarse-grained
feedback to the user: either it reports a type error, which means there is still more work to do to complete the
proof, or it does not, which means the proof is done. An opportunity exists to extend Liquid Haskell to support
an interactive proof development process, with finer-grained feedback to the user.

The interactive Agda proof development experience is enabled by a feature called typed holes. Typed holes
allow Agda programmers to indicate parts of a proof that they need help with filling in. In an interactive environ-
ment (such as an IDE), the programmer can use holes to interact with the type checker by, for example, asking for
the type expected by the hole (that is, the proposition that needs to be proven to fill in that hole). Additional IDE
commands can assist the programmer in filling in holes [63]. For example, if the programmer has partially filled
a hole with an expression whose return type matches the type expected by the hole, then an IDE command can
generate new holes indicating the types of the arguments of the expression. For a hole on the right-hand-side of
a definition, another IDE command can case-split on a pattern variable and generate new holes for each case.

For this Task, the PI and team will investigate improving the interactivity of Liquid Haskell by extending it
with support for typed holes and interactive editing commands that take advantage of them. In doing so, we plan
to leverage GHC Haskell’s existing recently added support for typed holes [22], which was itself inspired by Agda.
As a simple mock-up of how typed holes might work in Liquid Haskell, consider a listLength function that we
want to prove has the same behavior as the built-in len.

listLength :: [a] -> Int

listLength [] = 0

listLength (x:xs) = 1 + listLength xs

listLengthProof :: xs:_ -> { _:Proof | listLength xs == len xs }

listLengthProof = _

The body of listLengthProof is a hole, written as _. Liquid Haskell might then generate the message:

Found `_’ of type `xs:[a] -> { _:Proof | listLength xs == len xs }’.

Consider a case split as in the body of `listLength’.

Performing the case split could be automated with a keystroke, resulting in code with two holes:

listLengthProof :: xs:_ -> { _:Proof | listLength xs == len xs }

listLengthProof [] = _

listLengthProof (y:ys) = _

For the first of these holes, Liquid Haskell could issue a message like

Found `_' of type `{ _:Proof | xs == [] && listLength xs == len xs }'.

This can be completed with `()'.
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The replacement of _ with () could again be automated with a keystroke, or manually completed. The PI and
team have a history of collaboration with the Liquid Haskell developers, and we intend to work closely with them
to design and develop this feature (see attached letter of collaboration).

3.2.3 Task 6: Mapping the Space of Hybrid Verification Tools

Tasks 4 and 5 suggest a blurring of the boundary between interactive theorem proving, exemplified by proof assis-
tants such as Coq [9], Agda [46], and Isabelle [72], and automated theorem proving, exemplified by SMT solvers
such as Z3 [17] and CVC4 [7] and tools that build on them. Instead, there is a multidimensional spectrum of
hybrid automatic/interactive (sometimes called “auto-active” [35]) verification approaches, with different tools
providing varying degrees of granularity of feedback provided to the human user, and different styles of specify-
ing program properties, e.g., as types as opposed to as Floyd-Hoare-style assertions. Liquid Haskell represents
one point in this multidimensional space, as do emerging proof assistants that integrate SMT automation such as
Lean [18] and F* [62, 41], SMT-aided verification-aware languages such as Dafny [34] and Kaplan [29], and proof
assistants like Agda if augmented with the aforementioned Schmitty [71]. Unfortunately, the research commu-
nity’s knowledge of such hybrid verification tools is fragmented: they are dots on a map, but we have no robust
theory to tie them together. This to the tools being poorly understood and hence under-exploited.

For this Task, the PI and team will carry out a survey of the landscape of such hybrid language-based proof
engineering tools. In addition to the above questions about granularity of feedback and specification styles, some
of the questions that our survey will explore include: How does the tool address mismatches between the theories
or data types of the solver and those of the host programming language? Does the tool isolate code that is only
typechecked (because it is used only for verification purposes) from code that is executed at run time? How
are solver-side proofs reified on the language side, if at all? What portions of the solver are used (for instance,
what SMT theories are exposed), and what control does the user have over this choice, if any? By systematically
surveying the landscape of these tools, this Task will contribute to a holistic scientific understanding of hybrid
automatic/interactive verification approaches, and will aid future work on, for example, integrating refinement
types and dependent types.

Related work. A recent survey of proof engineering tools by Ringer et al. deems proof assistants like Agda,
Coq, and Isabelle to be in scope, and SMT-based verification languages like Dafny to be out of scope [50, §1.2].4

Our survey will instead focus on the latter category, with particular attention paid to the tools’ behavior at the
solver/language boundary.

4 Education and Outreach Plan

As an educator, the PI works to engage and excite students, to ameliorate social obstacles to learning, and to
build paths that invite students into research. Despite distributed systems being both theoretically profound
and immediately practical and useful, distributed systems courses are often not offered at the undergraduate
level, and many undergraduate students (as well as industry practitioners) suffer from a lack of approachable
distributed systems study materials. For distributed systems research — and particularly for verification work,
such as the proposed research agenda — even less of an on-ramp exists. Therefore the goal of the education and
outreach plan is to build on the PI’s experience teaching distributed systems to create approachable entry points
to distributed systems research, especially for undergraduate students and industry practitioners.

4Ringer et al. do discuss hammers, which are collections of proof assistant tactics that leverage external solvers, including SMT
solvers [50, §5.2.1]; our focus is on tools that use SMT more extensively.
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Figure 4: Excerpts of student-created zines from a previous offering of the PI’s Distributed Systems course.

Innovation in teaching distributed systems. Each spring, the PI teaches the undergraduate distributed sys-
tems course (CSE 138) at UC Santa Cruz with 80-100 students per offering of the course. The PI uses an interactive
style of teaching at the chalkboard (or, for remote teaching, a document camera with markers on paper) rather
than with pre-prepared slides. Students have responded extremely well to this teaching style, remaining en-
gaged and responsive in a way that is unusual for a large lecture course. In course evaluations, students regularly
comment on how the hand-written and hand-drawn style keeps the course at a reasonable pace: fast enough to
be interesting, yet not so fast that students disengage. In spring 2020 and spring 2021, the PI used the online
streaming service Twitch.tv to broadcast these lectures live to a worldwide public audience (using a separate, pri-
vate discussion platform for enrolled students). Since March 2020, the YouTube recordings of the lectures have
been collectively viewed over 60,000 times and are popular both with students and practitioners. As part of the
education and outreach plan, the PI will build on her existing teaching experience and existing audience to create
a new series of live broadcasts and video recordings focusing on distributed systems verification, and will integrate
these materials into the existing course and disseminate them broadly on online platforms.

Creation anddissemination of educational zines. There is a rich history of using zines— short, self-published,
often hand-lettered and hand-illustrated pamphlets — for scientific and technical communication; a recent ex-
ample is the NSF-supported EPiQC project’s zines about quantum computing [64]. In a previous offering of the
CSE 138 course, the PI introduced an optional assignment in which students created zines about distributed sys-
tems topics. In this initial pilot, 16 students created 12-16 page zines (with titles such as “What Makes the Web
Fast?” and “Let’s Talk Replication in Distributed Systems”); Figure 4 shows excerpts of student-created zines. In
addition to the zines serving a need for approachable learning materials in future iterations of the course, the zine
creation process itself helps students solidify their understanding of the course material and improve their sci-
entific communication skills. There are well-known benefits [48, 16] to involving undergraduate students in the
teaching process as peer or “near-peer” teachers in STEM courses. Yang [76] discusses how the act of zine creation
in particular can foster scientific literacy and learning gains, as students go beyond consumption of information
to active participation in the creation of content.

Based on this successful pilot, we plan to deeply integrate zine creation into the proposed project’s education
and outreach plan. During each summer of the five-year project scope, the PI will recruit undergraduate students
from the CSE 138 course into summer research assistantships on her team to create zines about the team’s work.
The students involved in the project will be compensated by department funds, academic credit, and/or REU
funds. The zines that the students create will be freely available online and will serve as instructional content in
the PI’s (and others’) future courses and as an approachable public-facing introduction to the team’s research. To

14
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Thrust 1: Verified Libraries for Distributed Systems
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Task 2: Verified CRDTs, Simply
Task 3: Verified Causally Consistent Data Stores

Thrust 2: Hybrid Tools for Verifying Distributed Systems
Task 4: Integrating Refinement Types in Agda

Task 5: Improving the Interactivity of Liquid Haskell
Task 6: Mapping the Space of Hybrid Verification Tools

Education and Outreach Plan

Figure 5: Project timeline.

ensure that we prioritize creating high-quality zines, we have also budgeted support for Julia Evans, a well-known
professional computing zine creator [28] and a frequent collaborator with the PI on outreach work, to consult with
the PI’s team on the zine creation process (see attached letter of collaboration). For the undergraduate research
assistants, the act of zine creation will help them build understanding of the team’s work, develop their scientific
communication skills, and integrate them as active and productive members of the PI’s team, giving them an
entry point to the broader research community.

Previous outreach. The PI has a strong track record of outreach. Since 2014, the PI has organized !!Con (pro-
nounced “bang bang con”), a series of conferences that features ten-minute talks on the joy, excitement, and
surprise of computing, and that fosters what one attendee describes as “a counterculture of curiosity” [61]. The PI
led a team of volunteer organizers that brought !!Con to UC Santa Cruz as !!ConWest for the first time in 2019 and
2020. The PI also serves on the board of the Exclamation Foundation, the nonprofit entity that oversees the on-
going organization of !!Con events. The PI plans to continue to organize !!Con and !!Con West over the five years
of the proposed project. The PI also co-organized the Programming Languages Mentoring Workshop (PLMW) at
ICFP ’20 and ’21, gave talks at PLMW at POPL ’20 and PLDI ’21, served on a panel of emerging researchers at PLMW
at POPL ’16, and is currently mentoring a student through the SIGPLAN-M Long-Term Mentoring program.

5 Project Timeline

The proposed project budget includes support for one full-time graduate student who will work with the PI on all
aspects of the project. Figure 5 shows our proposed timeline for the five-year time frame of the proposal. Thrust
1 spans years 1-4, with year 1 focused on the development of a verified causal message delivery library (Task
1). In years 2-4, we will develop a library of verified CRDTs (Task 2) and verified causally consistent data stores
(Task 3), building on Task 1. Thrust 2 overlaps with Thrust 1 and spans years 2-5. In years 2-4 we will explore
integrating refinement types into Agda (Task 4) and adding interactive proof development to Liquid Haskell (Task
5). In year 5 we will focus on comprehensively surveying the space of hybrid verification tools (Task 6), integrating
the knowledge gathered from Tasks 1-5. For the education and outreach plan, during spring of each year, the PI’s
annually offered distributed systems course will incorporate zine creation, and undergraduate students recruited
from the course will join the PI and team each summer to create research zines.

6 Prior NSF Support

The PI has not previously been a PI or co-PI on an NSF-funded award.

15



References

[1] Cristina L. Abad, Eduardo Ortiz-Holguin, and Edwin F. Boza. Have We Reached Consensus? An Analysis of
Distributed Systems Syllabi, page 1082–1088. Association for Computing Machinery, New York, NY, USA,
2021. ISBN 9781450380621. URL https://doi.org/10.1145/3408877.3432409.

[2] Arup Acharya and B.R. Badrinath. Recording distributed snapshots based on causal order of mes-
sage delivery. Information Processing Letters, 44(6):317 – 321, 1992. ISSN 0020-0190. doi: https://
doi.org/10.1016/0020-0190(92)90107-7. URL http://www.sciencedirect.com/science/article/pii/

0020019092901077.

[3] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal memory: def-
initions, implementation, and programming. Distributed Computing, 9(1):37–49, 1995. doi: 10.1007/
BF01784241. URL https://doi.org/10.1007/BF01784241.

[4] Sridhar Alagar and S. Venkatesan. An optimal algorithm for distributed snapshots with causal mes-
sage ordering. Information Processing Letters, 50(6):311 – 316, 1994. ISSN 0020-0190. doi: https://
doi.org/10.1016/0020-0190(94)00055-7. URL http://www.sciencedirect.com/science/article/pii/

0020019094000557.

[5] Robert Atkey, Patricia Johann, and Neil Ghani. When is a type refinement an inductive type? In Martin Hof-
mann, editor, Foundations of Software Science and Computational Structures, pages 72–87, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. ISBN 978-3-642-19805-2.

[6] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and
Marc Shapiro. Putting consistency back into eventual consistency. In Proceedings of the Tenth European Con-
ference on Computer Systems, EuroSys ’15, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450332385. doi: 10.1145/2741948.2741972. URL https://doi.org/10.1145/2741948.2741972.

[7] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew
Reynolds, and Cesare Tinelli. Cvc4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 171–177, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-22110-1.

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
http://smt-lib.org, 2021.

[9] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Development: Coq’Art The Calculus
of Inductive Constructions. Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 3642058809.

[10] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. SIGOPS Oper. Syst. Rev., 21(5):
123–138, November 1987. ISSN 0163-5980. doi: 10.1145/37499.37515. URL https://doi.org/10.1145/

37499.37515.

[11] Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight causal and atomic group multicast. ACM
Trans. Comput. Syst., 9(3):272–314, August 1991. ISSN 0734-2071. doi: 10.1145/128738.128742. URL https:
//doi.org/10.1145/128738.128742.

[12] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures. ACM Trans.
Comput. Syst., 5(1):47–76, January 1987. ISSN 0734-2071. doi: 10.1145/7351.7478. URL https://doi.org/

10.1145/7351.7478.

1

https://doi.org/10.1145/3408877.3432409
http://www.sciencedirect.com/science/article/pii/0020019092901077
http://www.sciencedirect.com/science/article/pii/0020019092901077
https://doi.org/10.1007/BF01784241
http://www.sciencedirect.com/science/article/pii/0020019094000557
http://www.sciencedirect.com/science/article/pii/0020019094000557
https://doi.org/10.1145/2741948.2741972
http://smt-lib.org
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478


[13] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures. ACM Trans.
Comput. Syst., 5(1):47–76, January 1987. ISSN 0734-2071. doi: 10.1145/7351.7478. URL https://doi.org/

10.1145/7351.7478.

[14] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On verifying causal consistency. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, page
626–638, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346603. doi: 10.
1145/3009837.3009888. URL https://doi.org/10.1145/3009837.3009888.

[15] Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live - an engineering per-
spective (2006 invited talk). In Proceedings of the 26th Annual ACM Symposium on Principles of Distributed
Computing, 2007. URL http://dx.doi.org/10.1145/1281100.1281103.

[16] H. E. Chrispeels, M. L. Klosterman, J. B. Martin, S. R. Lundy, J. M. Watkins, C. L. Gibson, and G. K. Muday.
Undergraduates achieve learning gains in plant genetics through peer teaching of secondary students. CBE
Life Sciences Education, 13(4):641–652, 2014. doi: 10.1187/cbe.14-01-0007. URL https://www.lifescied.

org/doi/10.1187/cbe.14-01-0007.

[17] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and Jakob Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

[18] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The lean
theorem prover (system description). In International Conference on Automated Deduction, pages 378–388.
Springer, 2015.

[19] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark Barrett.
SMTCoq: A plug-in for integrating SMT solvers into Coq. In Rupak Majumdar and Viktor Kuncak, editors,
Proceedings of the 29th International Conference on Computer Aided Verification (CAV ’17), volume 10426 of
Lecture Notes in Computer Science, pages 126–136. Springer, July 2017. URL http://www.cs.stanford.edu/

~barrett/pubs/EMT+17.pdf. Heidelberg, Germany.

[20] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. Proceedings of the
11th Australian Computer Science Conference, 10(1):56–66, 1988.

[21] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, April 1985. ISSN 0004-5411. doi: 10.1145/3149.214121. URL
https://doi.org/10.1145/3149.214121.

[22] GHC Team. Typed holes. https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

exts/typed_holes.html, 2021.

[23] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford. Verifying strong
eventual consistency in distributed systems. Proc. ACM Program. Lang., 1(OOPSLA), October 2017. doi:
10.1145/3133933. URL https://doi.org/10.1145/3133933.

[24] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’cause i’m strong
enough: Reasoning about consistency choices in distributed systems. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16, page 371–384, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450335492. doi: 10.1145/2837614.2837625.
URL https://doi.org/10.1145/2837614.2837625.

2

https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/3009837.3009888
http://dx.doi.org/10.1145/1281100.1281103
https://www.lifescied.org/doi/10.1187/cbe.14-01-0007
https://www.lifescied.org/doi/10.1187/cbe.14-01-0007
http://www.cs.stanford.edu/~barrett/pubs/EMT+17.pdf
http://www.cs.stanford.edu/~barrett/pubs/EMT+17.pdf
https://doi.org/10.1145/3149.214121
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/typed_holes.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/exts/typed_holes.html
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2837614.2837625


[25] Victor Grishchenko. Deep hypertext with embedded revision control implemented in regular expressions. In
Proceedings of the 6th International Symposium on Wikis and Open Collaboration, WikiSym ’10, New York, NY,
USA, 2010. Association for Computing Machinery. ISBN 9781450300568. doi: 10.1145/1832772.1832777.
URL https://doi.org/10.1145/1832772.1832777.

[26] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath
Setty, and Brian Zill. IronFleet: Proving Practical Distributed Systems Correct, page 1–17. Association for
Computing Machinery, New York, NY, USA, 2015. ISBN 9781450338349. URL https://doi.org/10.1145/

2815400.2815428.

[27] Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordination analysis and synthesis. Proc. ACM
Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290387. URL https://doi.org/10.1145/3290387.

[28] Julia Evans. Wizard zines. https://wizardzines.com/, 2021.

[29] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Constraints as control. In Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’12, page 151–164, New
York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450310833. doi: 10.1145/2103656.
2103675. URL https://doi.org/10.1145/2103656.2103675.

[30] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):
558–565, July 1978. ISSN 0001-0782. doi: 10.1145/359545.359563. URL http://doi.acm.org/10.1145/

359545.359563.

[31] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998. ISSN 0734-
2071. doi: 10.1145/279227.279229. URL https://doi.org/10.1145/279227.279229.

[32] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole Number
121, December 2001), pages 51–58, December 2001. URL https://www.microsoft.com/en-us/research/

publication/paxos-made-simple/.

[33] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley Longman Publishing Co., Inc., USA, 2002. ISBN 032114306X.

[34] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Proceedings of the
16th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’10, page
348–370, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3642175104.

[35] K Rustan M Leino and Michał Moskal. Usable auto-active verification. In Usable Verification Workshop, 2010.

[36] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified causally consistent distributed key-
value stores. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, page 357–370, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450335492. doi: 10.1145/2837614.2837622. URL https://doi.org/10.1145/2837614.2837622.

[37] Sam Lindley and Conor McBride. Hasochism: The pleasure and pain of dependently typed haskell program-
ming. In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, Haskell ’13, page 81–92, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450323833. doi: 10.1145/2503778.2503786.
URL https://doi.org/10.1145/2503778.2503786.

[38] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou. Verifying repli-
cated data types with typeclass refinements in liquid haskell. Proc. ACMProgram. Lang., 4(OOPSLA), Novem-
ber 2020. doi: 10.1145/3428284. URL https://doi.org/10.1145/3428284.

3

https://doi.org/10.1145/1832772.1832777
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3290387
https://wizardzines.com/
https://doi.org/10.1145/2103656.2103675
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/2503778.2503786
https://doi.org/10.1145/3428284


[39] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle for eventual:
Scalable causal consistency for wide-area storage with COPS. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP ’11, page 401–416, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450309776. doi: 10.1145/2043556.2043593. URL https://doi.org/10.

1145/2043556.2043593.

[40] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and convergence. Technical
report, The University of Texas at Austin, 2011.

[41] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Catalin Hritcu, Monal
Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro,
Aseem Rastogi, and Nikhil Swamy. Meta-F*: Proof automation with SMT, tactics, and metaprograms. In 28th
European SymposiumonProgramming (ESOP), pages 30–59. Springer, 2019. doi: 10.1007/978-3-030-17184-1\
_2. URL https://fstar-lang.org/papers/metafstar.

[42] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed Algo-
rithms, pages 215–226. North-Holland, 1989.

[43] Kartik Nagar and Suresh Jagannathan. Automated parameterized verification of crdts. In Isil Dillig and Serdar
Tasiran, editors, Computer Aided Verification, pages 459–477. Springer International Publishing, 2019. ISBN
978-3-030-25543-5.

[44] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. Proving the safety of highly-available distributed objects. In
Peter Müller, editor, Programming Languages and Systems, pages 544–571, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-44914-8.

[45] Nils Anders Danielsson, Matthew Daggitt, Guillaume Allais. The agda standard library: Finite sets. https:
//agda.github.io/agda-stdlib/Data.Fin.Base.html, 2021.

[46] Ulf Norell. Dependently typed programming in agda. In Proceedings of the 6th International Conference on
Advanced Functional Programming, AFP’08, page 230–266, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
3642046517.

[47] Peter Bailis. Stickiness and client-server session guarantees. http://www.bailis.org/blog/

stickiness-and-client-server-session-guarantees/, 2014.

[48] Heather Pon-Barry, Becky Wai-Ling Packard, and Audrey St. John. Expanding capacity and promoting inclu-
sion in introductory computer science: a focus on near-peer mentor preparation and code review. Computer
Science Education, 27(1):54–77, 2017. doi: 10.1080/08993408.2017.1333270. URL https://doi.org/10.

1080/08993408.2017.1333270.

[49] Jon Postel. Transmission control protocol. STD 7, RFC Editor, September 1981. URL http://www.

rfc-editor.org/rfc/rfc793.txt. http://www.rfc-editor.org/rfc/rfc793.txt.

[50] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. Qed at large: A survey of
engineering of formally verified software. Foundations and Trends® in Programming Languages, 5(2-3):102–
281, 2019. ISSN 2325-1107. doi: 10.1561/2500000045. URL http://dx.doi.org/10.1561/2500000045.

[51] Hyun-Gul Roh, Myeongjae Jeon, Jinsoo Kim, and Joonwon Lee. Replicated abstract data types: Building
blocks for collaborative applications. J. Parallel Distrib. Comput., 71(3):354–368, 2011. doi: 10.1016/j.jpdc.
2010.12.006. URL https://doi.org/10.1016/j.jpdc.2010.12.006.

4

https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
https://fstar-lang.org/papers/metafstar
https://agda.github.io/agda-stdlib/Data.Fin.Base.html
https://agda.github.io/agda-stdlib/Data.Fin.Base.html
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
http://www.bailis.org/blog/stickiness-and-client-server-session-guarantees/
https://doi.org/10.1080/08993408.2017.1333270
https://doi.org/10.1080/08993408.2017.1333270
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://dx.doi.org/10.1561/2500000045
https://doi.org/10.1016/j.jpdc.2010.12.006


[52] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’08, page 159–169, New York, NY,
USA, 2008. Association for Computing Machinery. ISBN 9781595938602. doi: 10.1145/1375581.1375602.
URL https://doi.org/10.1145/1375581.1375602.

[53] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: predicate subtyping in PVS. IEEE Transac-
tions on Software Engineering, 24(9):709–720, 1998. doi: 10.1109/32.713327.

[54] André Schiper, Jorge Eggli, and Alain Sandoz. A new algorithm to implement causal ordering. In Proceedings
of the 3rd International Workshop on Distributed Algorithms, page 219–232, Berlin, Heidelberg, 1989. Springer-
Verlag. ISBN 3540516875.

[55] N. Schiper, V. Rahli, R. Van Renesse, M. Bickford, and R. L. Constable. Developing correctly replicated
databases using formal tools. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pages 395–406, 2014. doi: 10.1109/DSN.2014.45.

[56] Frank B Schmuck. The use of efficient broadcast protocols in asynchronous distributed systems. PhD thesis, 1988.

[57] Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for datatypes. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15, page 195–
207, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450333009. doi: 10.1145/
2676726.2676996. URL https://doi.org/10.1145/2676726.2676996.

[58] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of convergent
and commutative replicated data types. 2011.

[59] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data types. In
Xavier Défago, Franck Petit, and Vincent Villain, editors, Stabilization, Safety, and Security of Distributed Sys-
tems, pages 386–400, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-24550-3.

[60] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative programming over eventually
consistent data stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’15, page 413–424, New York, NY, USA, 2015. Association for Computing Machin-
ery. ISBN 9781450334686. doi: 10.1145/2737924.2737981. URL https://doi.org/10.1145/2737924.

2737981.

[61] Sumana Harihareswara. Toward a !!con aesthetic. https://recompilermag.com/issues/extras/

toward-a-bangbangcon-aesthetic/, 2016.

[62] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. Secure
distributed programming with value-dependent types. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’11, page 266–278, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450308656. doi: 10.1145/2034773.2034811. URL https://doi.org/10.

1145/2034773.2034811.

[63] The Agda Team. Holes and case splitting. https://agda.readthedocs.io/en/v2.6.2/

getting-started/a-taste-of-agda.html#holes-and-case-splitting, 2021.

[64] The EPiQC Team. Zines. https://www.epiqc.cs.uchicago.edu/zines, 2021.

[65] Joseph Tsidulko. The 10 biggest cloud outages of 2020. https://www.crn.com/slide-shows/cloud/

the-10-biggest-cloud-outages-of-2020, 2020.

5

https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2676726.2676996
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://recompilermag.com/issues/extras/toward-a-bangbangcon-aesthetic/
https://recompilermag.com/issues/extras/toward-a-bangbangcon-aesthetic/
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2034773.2034811
https://agda.readthedocs.io/en/v2.6.2/getting-started/a-taste-of-agda.html#holes-and-case-splitting
https://agda.readthedocs.io/en/v2.6.2/getting-started/a-taste-of-agda.html#holes-and-case-splitting
https://www.epiqc.cs.uchicago.edu/zines
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2020


[66] Robbert van Renesse. Causal controversy at le mont st.-michel. SIGOPS Oper. Syst. Rev., 27(2):44–53, April
1993. ISSN 0163-5980. doi: 10.1145/155848.155857. URL https://doi.org/10.1145/155848.155857.

[67] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones. Refinement types for
haskell. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming, ICFP
’14, page 269–282, New York, NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328739.
doi: 10.1145/2628136.2628161. URL https://doi.org/10.1145/2628136.2628161.

[68] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip Wadler, and
Ranjit Jhala. Refinement reflection: Complete verification with smt. Proc. ACM Program. Lang., 2(POPL),
December 2017. doi: 10.1145/3158141. URL https://doi.org/10.1145/3158141.

[69] Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. Theorem proving for
all: Equational reasoning in liquid haskell (functional pearl). In Proceedings of the 11th ACM SIGPLAN In-
ternational Symposium on Haskell, Haskell 2018, page 132–144, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450358354. doi: 10.1145/3242744.3242756. URL https://doi.org/10.

1145/3242744.3242756.

[70] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed storage systems. ACMComput.
Surv., 49(1), June 2016. ISSN 0360-0300. doi: 10.1145/2926965. URL https://doi.org/10.1145/2926965.

[71] Wen Kokke. Schmitty the solver. https://github.com/wenkokke/schmitty, 2021.

[72] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The isabelle framework. In Otmane Ait Mo-
hamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, pages 33–38, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-71067-7.

[73] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas
Anderson. Verdi: A framework for implementing and formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’15, page
357–368, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450334686. doi: 10.
1145/2737924.2737958. URL https://doi.org/10.1145/2737924.2737958.

[74] Sean Wolfe. Amazon’s one hour of downtime on prime day may have cost
it up to $100 million in lost sales. https://www.businessinsider.com/

amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7, 2018.

[75] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types. In Proceedings
of the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation, PLDI ’98, page
249–257, New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919874. doi: 10.1145/
277650.277732. URL https://doi.org/10.1145/277650.277732.

[76] Andrew Yang. Engaging Participatory Literacy through Science Zines. The American Biology Teacher, 72(9):
573 – 577, 2010. doi: 10.1525/abt.2010.72.9.10. URL https://doi.org/10.1525/abt.2010.72.9.10.

[77] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and verification of crdts. In
Erika Ábrahám and Catuscia Palamidessi, editors, Formal Techniques for Distributed Objects, Components, and
Systems, pages 33–48, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-43613-4.

6

https://doi.org/10.1145/155848.155857
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/2926965
https://github.com/wenkokke/schmitty
https://doi.org/10.1145/2737924.2737958
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://doi.org/10.1145/277650.277732
https://doi.org/10.1525/abt.2010.72.9.10

	Introduction
	Research Plan
	Education and Outreach Plan
	Broader Impacts

	Background and Preliminary Work
	Background: Refinement Types and Liquid Haskell
	Preliminary Work: Verified Conflict-Free Replicated Data Types with Liquid Haskell

	Research Plan
	Thrust 1: Verified Libraries for Distributed Systems
	Task 1: Verified Causal Message Delivery
	Task 2: Verified CRDTs, Simply
	Task 3: Verified Causally Consistent Data Stores

	Thrust 2: Hybrid Tools for Verifying Distributed Systems
	Task 4: Integrating Refinement Types in Agda
	Task 5: Improving the Interactivity of Liquid Haskell
	Task 6: Mapping the Space of Hybrid Verification Tools


	Education and Outreach Plan
	Project Timeline
	Prior NSF Support

